Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Vế phải bằng: \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{n}\) - \(\frac{1}{n+1}\) =>đpcm.
viết sai đề rồi phải là
CMR: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n+1}\)
\(\frac{1}{n}-\frac{1}{n-1}\)
=\(\frac{1.\left(n+1\right)}{n.\left(n+1\right)}-\frac{1.n}{n\left(n+1\right)}\)
=\(\frac{1}{n.\left(n+1\right)}\)
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(<\frac{1}{2^4}-\frac{1}{2^4}+\frac{1}{2^8}-\frac{1}{2^8}+...+\frac{1}{2^{4n}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}-\frac{1}{2^{2004}}\)=0+0+0+...+0+....+0=0 <0,2
Vậy S<0,2
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)
Suy ra: điều cần chứng minh
đặt 1/5^2+1/6^2+,,,+1/100^2=A
*chứng minh A<1/4
ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)
\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)
*chứng minh A>1/6
ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)
từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)
tick nhé
Tìm n nguyên để P=\(\frac{2n+1}{n-2}\) có gt nguyên
mk nghĩ đc bước kế tiếp là \(\frac{2n-4+5}{n-2}\)
bạn tách ra, để đc phân số 2n-4/n-2 và có kết quả là 2, còn 5/n-2 thì phải có giá trị nguyên thì phân số kia mới nguyên đc, từ đó bạn lập ra các trường hợp là đc, có j ko hiểu nt lại cho mk
Đặt A=\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\)
=> 2A= 1-\(\frac{1}{2}\) + \(\frac{1}{4}\) - \(\frac{1}{8}\) + \(\frac{1}{16}\) - \(\frac{1}{32}\)
=> 3A= 1 - \(\frac{1}{64}\) <1 => A<1:3 => A<\(\frac{1}{3}\) => đpcm.
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(=\frac{2}{4}-\frac{1}{4}+\frac{2}{16}-\frac{1}{16}+\frac{2}{64}-\frac{1}{64}\)
\(=\frac{1}{2}+\frac{1}{16}+\frac{1}{64}\)
=37/64
Bạn ghi sai đề rồi nhé Biểu thức trên phải lớn hơn 1/3 chứ
A=1+1/2^2+1/3^2+1/4^2+...+1/100^2
A<1+1/1*2+1/2*3+1/3*4+...+1/99*100
A=1+1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1+1-1/100
A=2-1/100<2
nên A<2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 2-\frac{1}{100}\)
Mà hiệu \(2-\frac{1}{100}< 2\Rightarrow A< 2\)
Sử dụng phương pháp quy nạp toán học
Với n = 1, ta có:
1 = (1 + 1)/2 (đúng)
Giả sử mệnh đề đúng với n = k >= 1 (k thuộc N*), tức là:
1 + 2 + 3 + 4 +.......+ k = k(1 + k)/2
Ta sẽ chứng minh mệnh đề đúng với n = k + 1, tức là:
1 + 2 + 3 + 4 + .......+ k +1 = (k + 1)(k + 2)/2 (*)
Biến đổi tương đương, ta có:
(*) <=> 1 + 2 + 3 + 4 +......+ k + k + 1 = (k + 1)(k + 2)/2
<=> (1 + 2 + 3 + 4 +......+ k) + k + 1 = (k + 1)(k + 2)/2
<=> k(k + 1)/2 + k + 1 = (k + 1)(k + 2)/2
<=> (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2 (đúng)
Đẳng thức trên đúng
Vậy theo nguyên lý quy nạp, ta chứng minh được mệnh đề:
1 +2 + 3 + 4 +.......+ n = n(1 + n)/2
Đặt biểu thức là (*)
Với n=1
=> (*)<=> 1=\(\frac{1.\left(1+1\right)}{2}\)
Vậy với n=1 ( đúng )
Giả sử (*) đúng với n=k
=> (*) <=> 1+2+3+...+k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh n=k+1
Thật vậy n=k+1 thì
(*) <=> 1+3+3+...+k+k+1 = \(\frac{k+1.\left(k+2\right)}{2}\)
<=> \(\frac{K\left(k+1\right)}{2}+K+1=\frac{\left(k+1\right).\left(k+2\right)}{2}\)
<=> \(\frac{k}{2}+1=\frac{k+2}{2}\)
<=>\(\frac{k}{2}+1=\frac{k}{2}+1\left(đúng\right)\)
Vậy (*) đúng với n=k+1
Vậy (*) đúng với mọi số tự nhiên n ϵ N ( Khác 0 )
Có \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>n\frac{1}{n+n}=\frac{1}{2}\left(đpcm\right)\)