Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể làm như sau
Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
.......
\(\dfrac{1}{100}< \dfrac{1}{50}\)
=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
Lại có
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
.......
\(\dfrac{1}{99}>\dfrac{1}{100}\)
=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
=> \(\dfrac{1}{2}< A< 1\)
Vậy A không phải số tự nhiên
dãy trên có tất cả :(100-51):1+1=50 phân số
Ta có : 1/2:50=1/100
=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)
Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối
=>dãy S >1/2
cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)
\(\Rightarrow S>\frac{50.1}{100}\)
\(\Rightarrow S>\frac{50}{100}\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Số số hạng của S là = (100-51):1+1=50 ( số hạng)
Phân số dùng để so sánh S với 1/2 là:1/2:50=1/100
Ta có
1/51>1/100
1/52>1/100
.
.
.
1/100> hoặc =1/100
--->1/51+1/52+1/53+...+1/100>1/100+1/100+1/100+...+1/100+1/100
--->S>50x1/100
--->S>50/100
--->S>1/2
Vậy S>1/2
Lời giải:
Hiển nhiên \(S>0\)
\(S=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=\frac{50}{51}<1\)
Do đó $0< S<1$ nên $S$ không là số tự nhiên.