K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)(ĐPCM)

10 tháng 4 2018

lon biav đêô

tiik e

13 tháng 8 2016

\(A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Chia A làm 2 phần,mỗi phân 25 số hạng.

\(A>\frac{25.1}{75}+\frac{25.1}{100}\)

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Bé hơn em làm tương tự có điều để nguyên cả 50 p/số.

Chúc em học tốt^^

13 tháng 8 2016

bạn có thể giải cụ thể hơn cho mình được ko ?

mình chả hiểu gì cả

12 tháng 8 2019

Biến đổi vp của đẳng thức :

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right]\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)

15 tháng 1 2017

A=\(-\frac{2392}{19809}\)

15 tháng 1 2017

đẹp tk nha

Kết quả hình ảnh cho reika aoki gif

25 tháng 2 2020

Ta có : \(B=\frac{\frac{1}{39}-\frac{1}{6}-\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}:5\frac{1}{6}\)

=> \(B=\frac{\frac{\frac{1}{13}-\frac{1}{2}-\frac{1}{17}}{3}}{\frac{\frac{1}{2}-\frac{1}{13}+\frac{1}{17}}{4}}:5\frac{1}{6}\)

=> \(B=\frac{\frac{\frac{1}{13}-\frac{1}{2}-\frac{1}{17}}{3}}{\frac{\frac{1}{13}-\frac{1}{2}-\frac{1}{17}}{-4}}:5\frac{1}{6}\)

=> \(B=\frac{-4}{3}:5\frac{1}{6}\)

=> \(B=\frac{-8}{6}:\frac{31}{6}=-\frac{8}{6}.\frac{6}{31}=-\frac{8}{31}\)

25 tháng 2 2020

Nguyễn Ngọc Lộc No choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếngVũ Minh Tuấn

16 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

18 tháng 8 2016

1/51+1/52+1/53 +...+1/100