Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)
Ta có: k(1) = a + b(1 - 1) + c(1 - 1)(1 - 2) = 1
=> a + b.0 + c.0.(-1) = 1
=> a = 1
k(2) = a + b.(2 - 1) + c(2 - 1)(2 - 2) = 3
=> a + b.1 + c.1 . 0 = 3
=> a + b = 3
Mà a = 1 => b = 3 - 1 = 2
k(0) = a + b.(0 - 1) + c(0 - 1)(0 - 2) = 5
=> a + b . (-1) + c.(-1).(-2) = 5
=> a - b + 2c = 5
Mà a = 1; b = 2 => 1 - 2 + 2c = 5
=> -1 + 2c = 5
=> 2c = 5 + 1
=> 2c = 6
=> c = 6 : 2 = 3
Vậy a = 1; b = 2; c = 3
\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)
\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)
=>Đề sai bạn xem lại nha
Chúc bn học tốt
\(\Leftrightarrow A\left(x\right)=\left(n+p\left(k-1\right)\right)x+m\)
\(\left\{{}\begin{matrix}A\left(0\right)=\left[n+p\left(k-1\right)\right].0+m=5\Rightarrow m=5\\A\left(1\right)=\left[n+p\left(k-1\right)\right].1+5=2\\A\left(2\right)=\left[n+p\left(k-1\right)\right].2+5=7\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\) (I)\(\left(2\right)and\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}n+p\left(k-1\right)=-3\\n+p\left(k-1\right)=1\end{matrix}\right.\) (ii)
(ii) vô nghiệm không tồn tại đa thức A(x) thỏa mãn yêu cầu bài toán