Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh các đẳng thức sau:
a. [ -a . (-a5) ]2 + [ -a2 . ( -a2) ]5 = 0
b.(-1)n . an+k = (-a)n . ak
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)
\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)
\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)
=>Đề sai bạn xem lại nha
Chúc bn học tốt
Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)
\(=\left(-1\right)^n\cdot a^n\cdot a^k\)
\(=\left(-1\cdot a\right)^n\cdot a^k\)
\(=\left(-a\right)^n\cdot a^k\)(đpcm)