K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)

\(=\left(-1\right)^n\cdot a^n\cdot a^k\)

\(=\left(-1\cdot a\right)^n\cdot a^k\)

\(=\left(-a\right)^n\cdot a^k\)(đpcm)

18 tháng 3 2020

\(\left[-a^5.\left(-a\right)^5\right]^2+\left[-a^2.\left(-a\right)^2\right]^5=0\)

\(\Leftrightarrow\left(a^{10}\right)^2+\left(a^4\right)^5=0\)

\(\Leftrightarrow a^{20}+a^{20}=0\)

\(\Leftrightarrow2a^{20}=0\)

\(\Leftrightarrow a=0\)

Vậy a = 0

23 tháng 3 2023

loading...  

31 tháng 8 2017

Giải:

a) Biến đổi VP, ta có:

\(\dfrac{1}{a}-\dfrac{1}{a+1}\)

\(=\dfrac{1.\left(a+1\right)}{a.\left(a+1\right)}-\dfrac{a.1}{a.\left(a+1\right)}\)

\(=\dfrac{a+1}{a.\left(a+1\right)}-\dfrac{a}{a.\left(a+1\right)}\)

\(=\dfrac{a+1-a}{a.\left(a+1\right)}\)

\(=\dfrac{1}{a.\left(a+1\right)}\) (đpcm)

b) Biến đổi VP, ta được:

\(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{1\left(a+2\right)}{a\left(a+1\right)\left(a+2\right)}-\dfrac{1.a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{a+2}{a\left(a+1\right)\left(a+2\right)}-\dfrac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{a+2-a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\dfrac{2}{a\left(a+1\right)\left(a+2\right)}\) (đpcm)

Chúc bạn học tốt!!!

25 tháng 3 2020

Ta có: VP = \(a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)\)

\(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(1) 

\(VT=\left(ab+b^2+ac+bc\right)\left(c+a\right)-8abc\)

\(=abc+b^2c+ac^2+bc^2+a^2b+b^2a+a^2c+abc-8abc\)

\(ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc\)(2)

Từ (1) ; (2) => VT = VP 

Vậy đẳng thức luôn đúng.

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x