Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
a) 25 - y2= 8.(x -2009)2
Do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009
b, x3.y=x.y3+1997x3.y=x.y3+1997
⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997
Ta có: -1997 là số nguyên tố
-xy(x+y)(x-y) là hợp số
a) 25 - y2= 8.(x -2009)2
do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009