K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)

1 chứng ming rằng 10^2011+8 chia hết cho 722/ cho M=3+3^2+3^3+…+3^119 chứng minh rằng M chia hết cho 133/cho số 155*710*4*16( có gạch ngang trên đầu) chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 3964/ a-tìm chữ số tận cùng của 57^1999 và 93^1999b- cho A=999993^1999-555557^1997 CMR A  chia hết cho 55/ ba ô tô chở khách cùng khởi hành lúc 6...
Đọc tiếp

1 chứng ming rằng 10^2011+8 chia hết cho 72

2/ cho M=3+3^2+3^3+…+3^119 chứng minh rằng M chia hết cho 13

3/cho số 155*710*4*16( có gạch ngang trên đầu) chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong 3 chữ số 1,2,3 một cách tùy ý thì số đó luôn chia hết cho 396

4/ a-tìm chữ số tận cùng của 57^1999 và 93^1999

b- cho A=999993^1999-555557^1997 CMR A  chia hết cho 5

5/ ba ô tô chở khách cùng khởi hành lúc 6 giờ sang từ 1 bến xe và đi theo 3 hướng khác nhau. Xe thứ 1 quay về bến sau 1 giờ 5 phút và sau 10 phút lại đi . Xe thứ 2 quay về bến sau 56 phút và lại đi sau 4 phút . Xe thứ 3 quay về bến sau 48 phút và sau 2 phút lại đi .Hãy tính khoảng thời gian ngắn nhất để 3 xe lại cùng xuất phát từ bến lần thứ 2 trong ngày và lúc đó là mấy giờ?

0
30 tháng 3 2021

a)   25 - y2= 8.(x -2009)2

Do 8.(x-2009)2​​​ không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25

TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)

TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)

TH3: y = +-2  thay vào phương trình thì x không thuộc Z loại

chỉ thử đến y=+- 5 để thỏa mãn ynhỏ hơn hoặc bằng 25

 Cuối cùng ta được y = +- 5 và x = 2009

b, x3.y=x.y3+1997x3.y=x.y3+1997

⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997

Ta có: -1997 là số nguyên tố

-xy(x+y)(x-y) là hợp số

a)   25 - y2= 8.(x -2009)2

do 8.(x-2009)2​​​ không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25

TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)

TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)

TH3: y = +-2  thay vào phương trình thì x không thuộc Z loại

chỉ thử đến y=+- 5 để thỏa mãn ynhỏ hơn hoặc bằng 25

 Cuối cùng ta được y = +- 5 và x = 2009