Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n thuộc N
B=x^2 +2x +1 =(x+1)^2
\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)
\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)
với n =0 đúng
n >0 =>2n+1 >=3
=> x^(2n+1) =(x+1).g(x) => dpcm
Ta có :
\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)
Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)
Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3