K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

Ta đã biết 1 số tự nhiên khi chia cho 7 chỉ có thể có 7 loại số dư là dư 0; 1; 2; 3; 4; 5; 6. Đề bài cho 8 số mà chỉ có 7 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư trong phép chia cho 7 

Gọi 2 số đó là abc và deg (\(a;d\ne0\); a;b;c;d;e;g là các chữ số)

=> số được tạo bởi 2 số đó khi viết liền nhau là abcdeg 

Ta có: abcdeg = abc.1000 + deg

                       = abc.1001 - abc + deg

                       = abc.7.143 - (abc - deg)

Do abc.7.143 chia hết cho 7; abc - deg chia hết cho 7 vì 2 số này cùng dư trong phép chia cho 7

=> abcdeg chia hết cho 7 (đpcm)

 

 

6 tháng 4 2016

Lấy 8 số tự nhiên đó chia cho 7 ta được 7 giá trị dư từ 1 đến 7 

Theo nguyên lí Dirichlet  sẽ có 2 số có cùng số dư khi chia cho 7 

Gọi 2 số đó là abc và deg 

Ta có :

       abc-deg chia hết cho 7

  abcdeg=1001abc-(abc-deg)

Vì 1001abc chia hết cho 7 nên 1001abc-(abc-deg) chia hết cho 7

Vậy trong 8 số tự nhiên có 3 chữ số bao giờ cũng chọn ra 2 số mà khi viết liền nhau tạo được 1 số có 6 chữ số chia hết cho 7

6 tháng 4 2016

Sao tui ko dc h