K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

olm là con  chó

25 tháng 12 2021

TA XÉT : 2018 SỐ SAU 

A1=6;A2=66;A3=666;.....;A2018=666...6(2018 CHŨ SỐ 6)

KHIACHIA 2018 SỐ TRÊN CHO 2017 TA ĐƯỢC 2018 SỐ DƯ SAU(0;1;2;3;4;...;2016) VÌ CÓ 2018 SỐ DƯ MÀ CHỈ CÓ 2017 TRƯỜNG HỢ DƯ=> SẼ CÓ 2 SỐ NÀO ĐÓ CÙNG DƯ KHI CHIA CHO 2017

TA CÓ:

Am=666..66(GỒM M CHỮ SỐ 6) An=66..6(GỒM N CHỮ SỐ 6) GIẢ SỬ Am VÀ An CÙNG DƯ KHI CHIA CHO 2017=> Am-An CHIA HẾT CHO 2017  <=> 666..6(GỒM M CHỮ SỐ 6)-66..6(GỒM N CHỮ SỐ 6) CHIA HẾT CHO 2017 => 66..6000..0(GỒM M-N CHỮ SỐ 6 VÀ N CHỮ SỐ 0) CHIA HẾT CHO 2017 <=>66..6 NHÂN VỚI 10^N ( VỚI M-N CHỮ SỐ 6) CHIA HẾT CHO 2017 => MÀ (10^N VÀ 2017) NGUYÊN TỐ CÙNG NHAU => 666..6(GỒM M-N CHỮ SỐ 6) CHIA HẾT CHO 2017

VẬY TỒN TẠI SÓ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017=> ĐIỀU PHẢI CHỨNG MINH

24 tháng 4 2021

+) Chọn dãy số gồm 2014 số 

 1,11,111,....,111..11

                 (2014 cs1)

+) Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia cho2013

 Giả sử số đó là 111...11-111...11    (m>n)

                           (m cs1) (n cs 1)

=>111..1  -  11...1 chia hết cho 2013

=111...100..0    chia hết cho 2013

(m-n cs 1)(n cs0)

=111..1.10n

(m-n cs 1)

Mà 10n ko chia hết cho 2013 

=>111..1 chia hết cho 2013 => ĐPCM (điều phải cm)

(m-n cs 1)

cho mình xin k nha

13 tháng 9 2015

bài  đơn giản                                                                       

Xet 18 số :7;77;777;....;77777....7777;777777....7777777;7777...777777

                           16 c/s 7         17 c/s 7            18 c/s 7

có 18 số mà chỉ có 17 số dư trong phep chia cho 17, do đó theo nguyên lý Điricle tồn tại 2 số có cừng số dư trong phep chia cho 17 nên hiệu của 2 số đó chia hết cho 17

Gọi 2 số đó là 77777...77777;77777.....77777

                   m c/s 7         n c/s 7 \(\left(1\le n< m\le18\right)\)

Suy ra hiệu của chóng là:\(7777...7777-77777...7777⋮17\)

                               m c/s 7                   n c/s 7             

(Vì chóng có cừng số dư nên hiệu của chóng chia hết cho 17)

\(\Rightarrow\)77..7770000+77..777-7777...77777\(⋮\)17 (tách số bị trừ)

m-n c/s 7;n c/0;n c/s 7   n c/s 7

\(\Rightarrow\)777.....7777 000000...00000 \(⋮\)17 hay

       m-n c/s 7     n c/s 0

7777...77777 \(\times\)10n \(⋮\)17

m-n c/s 7

Vị (10n,17)=1 nên

Suy ra :77777.....777777 \(⋮\)17

          m-n c/s 7

Rã ràng số trên toàn c/s 7 và số chữ số >0 (vì n<m nen m-n>0)

Vậy tồn tại số chia hết cho 17 toàn c/s 7

nhớ tích cho mk nha, nếu bạn ko biết nguyên lý đá là gì thì bạn có thể tìm trên mạng

  

9 tháng 9 2015

Chọn dãy:

2;22;222;222;...;22..2(32 c/s 2)

Chắc chắn trong dãy có ít nhất 2 số có cùng số dư khi chia cho 31

Gọi 2 số đó là:

22..2(a c/s 2); 22..2(b c/s 2)                        [1< a < b < 31]

=> 22..2(b c/s 2) - 22..2(a c/s 2)

=>22..200..0 [b-a c/s 2; a c/s 0]

=>22..2(b-a c/s 2) x 10a

Vì (10, 31)=1 => (10a,31)=1

=> 22..2 (b-a c/s 2) chia hết cho 31