K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Gọi \(O;O'\) lần lược là tâm của hbh \(ABCD;A'B'C'D'\)

\(\Rightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}+\overrightarrow{DD'}\)

\(=\overrightarrow{AO}+\overrightarrow{OO'}+\overrightarrow{O'A'}+\overrightarrow{BO}+\overrightarrow{OO'}+\overrightarrow{O'B'}+\overrightarrow{CO}+\overrightarrow{OO'}+\overrightarrow{O'C'}+\overrightarrow{DO}+\overrightarrow{OO'}+\overrightarrow{O'D}'\)

\(=\left(\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{DO}\right)+\left(\overrightarrow{O'A'}+\overrightarrow{O'B'}+\overrightarrow{O'C'}+\overrightarrow{O'D'}\right)+2\overrightarrow{OO'}\)

\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\left(đpcm\right)\)

28 tháng 7 2018

chưa hiểu bước gần cuối cùng

15 tháng 8 2018

1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html

câu 2 cũng chả khác gì cả

13 tháng 9 2018

VT = CA + AC'
mà CA = CD + CB VÀ AC' = AD' + AB'
Cộng hai vế lại ta có : CD + CB + AD' + AB' = BD + B'D'
=BD' + DD' + BB' + D'B = BB' + DD' = VP
=> đpcm

NV
20 tháng 9 2020

Bạn coi lại đề, 2 điểm D và D' là điểm nào nhỉ?

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:
Bổ đề: Tam giác $ABC$ có trọng tâm $G$

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Chứng minh:

* Chiều thuận:

Kéo dài $AG$ cắt $BC$ tại $M$ thì $M$ là trung điểm $BC$ nên $\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}$

Ta có: \(\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM};\overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\)

\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM}=\overrightarrow{GB}+\overrightarrow{GC}\)

Mà theo tính chất trọng tâm: \(-\overrightarrow{GA}=2\overrightarrow{GM}\)

\(\Rightarrow -\overrightarrow{GA}=\overrightarrow{GB}+\overrightarrow{GC}\) \(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

* Chiều đảo:

Gọi $M,N$ là trung điểm của $BC,AC$

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow \overrightarrow{GA}+(\overrightarrow{GM}+\overrightarrow{MB})+(\overrightarrow{GM}+\overrightarrow{MC})=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GM}=\overrightarrow{0}\Rightarrow \overrightarrow{GA}=-2\overrightarrow{GM}\) nên $G,A,M$ thẳng hàng.

Tương tự: $G,B,N$ thẳng hàng nên $G$ là trọng tâm tam giác $ABC$

Ta có đpcm.

----------------------------------------------

Áp dụng vào bài:

$G$ là trọng tâm của $ABC$ và $A'B'C'$

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)

\(\Leftrightarrow \overrightarrow{GA'}-\overrightarrow{GA}+\overrightarrow{GB'}-\overrightarrow{GB}+\overrightarrow{GC'}-\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)

4 tháng 8 2019

Cách khác:

Gọi \(G,G'\)lần lượt là trọng tâm của \(\Delta ABC,\Delta A'B'C'\) ,ta có:

\(3\overrightarrow{GG'}=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)

\(3\overrightarrow{GG'}=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)\)

\(G\) là trọng tâm của \(\Delta ABC\) \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)

Để hai tam giác ABC và A'B'C' có trọng tâm trùng nhau \(\Rightarrow\overrightarrow{GG'}=\overrightarrow{0}\)

\(\Rightarrow3\overrightarrow{GG'}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)(đpcm)

NV
13 tháng 11 2019

\(\overrightarrow{AA'}=\overrightarrow{AO}+\overrightarrow{OO'}+\overrightarrow{O'A'}\)

Tách tương tự với 3 số hạng còn lại sau đó cộng vế với vế và chú ý rằng: \(\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0};\) \(\overrightarrow{BO}+\overrightarrow{DO}=\overrightarrow{0}\); \(\overrightarrow{O'A'}+\overrightarrow{O'C'}=\overrightarrow{0}\) ; \(\overrightarrow{O'B'}+\overrightarrow{O'D'}=\overrightarrow{0}\) theo tính chất hình bình hành ta sẽ có đpcm