K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

b) 

VP=(a+b)[(a-b)2+ab]

=(a+b)(a2-2ab+b2+ab)

=(a+b)(a2-ab+b2)

=a3+b3=VT

Vậy x3+y3=(a+b)[(a-b)2+ab]

c)

VP=(ac+bd)2+(ad-bc)2

=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2

=(a2c2+a2d2)+(b2d2+b2c2)

=a2.(c2+d2)+b2.(c2+d2)

=(a2+b2)(c2+d2)

Vậy (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2

29 tháng 7 2015

tks mem trieu dang

6 tháng 6 2017

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

18 tháng 8 2017

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

22 tháng 10 2016

Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)

cảm ơn bạn Rồng Đỏ Bảo Lửa

1 tháng 8 2016

A) Ta có : 
Vế phải = ( a + b ) ( a2 - 2ab + b+ab )
            = ( a + b ) ( a- ab + b)
            = a+ b = Vế trái ( điều phải chứng minh ) 

Chúc bạn học tốt ^^
 

1 tháng 8 2016

Câu a) thôi nhé

Ta có (a+b) [(a-b)2+ab] = (a+b)(a2-ab-b2) = a3-a2b + ab2 + ba- ab2 +b3

Thu gọn lại ta được a3 + b3

    

15 tháng 6 2017

(ac+bd)^2=\(^{a^2c^2+2abcd+b^2d^2}\) 

\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)

\(\Rightarrow\left(ac+bd\right)^2-\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) =vp(dpcm)

16 tháng 6 2017

????????????????

15 tháng 6 2017

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\Leftrightarrow0=0\)Có điều này đúng nên ta có đpcm đúng

15 tháng 6 2017

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+bc^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac-4a^2-4b^2-4c^2+4ab+4bc+4ac=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)(đpcm)