Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
kinh quá
\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)
\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)
Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Leftrightarrow ca+cb=2ab\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
\(\frac{a^2+c^2}{a^2+b^2}=\frac{c}{b}\Leftrightarrow b\left(a^2+c^2\right)=c\left(a^2+b^2\right)\Leftrightarrow a^2b+bc^2=a^2c+b^2c\)
\(\Leftrightarrow a^2b-a^2c=b^2c-bc^2\Leftrightarrow a^2\left(b-c\right)=bc\left(b-c\right)\Leftrightarrow a^2=bc\Leftrightarrow\frac{a}{b}=\frac{c}{a}\)(đpcm)
1/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}và\frac{a}{c}=\frac{3b}{3d}=\frac{a+3b}{c+3d}\)
\(\Rightarrow\frac{a-2b}{c-2d}=\frac{a+3b}{c+3d}\left(=\frac{a}{c}\right)\)
2/ b2 = ac => \(\frac{a}{b}=\frac{b}{c}\) và c2 = bd\(\frac{c}{d}=\frac{b}{c}\) =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}=k^3\) (1)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất tỉ lê thức ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)(2)
Từ (1) và (2) ta được: \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(=k^3\right)\)
đừng học kiểu đối phó bạn, ko hiểu tới đó cô sẽ giảng mà. cô có ăn thịt bạn đâu mà lo :)
vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)
đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2) thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)
do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Vì \(\frac{a}{b}=\frac{b}{c}\) suy ra \(b^2=ac\)
Có: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a.b}{b.c}=\frac{a}{c}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)
Vậy ta có đpcm.