K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

29 tháng 7 2018

Đề sai rồi nha bạn  : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )

                                   Bài làm

Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

hok tốt .

29 tháng 7 2018

Ta có: a2 = bc 

          => a.a = b.c

          => \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)\(\frac{a-b}{c-a}\)

Hình như bn ghi sai đề

13 tháng 7 2016

 minh can gap  lam

13 tháng 7 2016

a2 = bc

=> a.a = b.c

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)(Đpcm)

7 tháng 8 2016

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

28 tháng 9 2016

Do \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow\begin{cases}a=b.k\\c=a.k\end{cases}\)

Ta có:

\(\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+a}{c-a}=\frac{a.k+a}{a.k-a}=\frac{a.\left(k+1\right)}{a.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

10 tháng 12 2017

ta có :a^2=bc

⇒a.a=bc

⇒a/b=c/a

⇒a/c=b/a

Áp dụng tính chất dãy tỉ số bằng nhau a/c=b/a=a+b/c+a=a-b/c-a

⇒a+b/c+a=a-b/c-a

⇒a+b/a-b=c+a/c-a(điều phải chứng minh)

29 tháng 10 2016

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

15 tháng 1 2018

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

15 tháng 7 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

15 tháng 7 2017

ta có a+b/a-b=c+d/c-d

suy ra (a+b)(c-d)=(a-b)(c+d)

ac-ad+bc-bd=ac+ad-bc-bd

ac-ac+bc+bc-bd+bd=ad+ad

2bc=2ad 

nen bc=ad=a/b=c/d

vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d

20 tháng 12 2019

\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

29 tháng 7 2017

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)