K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

13 tháng 12 2021

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

19 tháng 12 2018

áp dụng t/c DTSBN,ta có:

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)

\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)

\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)

từ (!) và (@) => đpcm

7 tháng 1 2016

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

14 tháng 9 2019

b)Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

14 tháng 9 2019

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2+1\right)\left(a^2-1\right)\)

\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)

Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)

22 tháng 2 2019

Ta có:

0 ≤ a ≤ b ≤ c ≤ 1; và a, b, c ≥ 0

=> a - 1 ≤ 0 ; b - 1 ≤ 0

=> ( a - 1 )( b - 1 ) ≥ 0

=> ab - a - b + 1 ≥ 0

=> ab + 1 ≥ a + b

=>\(\frac{1}{ab+1}\le\frac{1}{a+b}\)    => \(\frac{c}{ab+1}\le\frac{c}{a+b}\)   (1)

Chứng Minh Tương Tự: =>     \(\frac{a}{bc+1}\le\frac{a}{a+b}\)    (2)

                                          và   \(\frac{b}{ac+1}\le\frac{b}{a+c}\)     (3)

Từ (1); (2) và (3)  =>

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)\(\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

=> \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)( ĐPCM )