Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi nha bạn : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )
Bài làm
Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)
áp dụng dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
hok tốt .
Ta có: a2 = bc
=> a.a = b.c
=> \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)= \(\frac{a-b}{c-a}\)
Hình như bn ghi sai đề
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
a2 = bc
=> a.a = b.c
=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)(Đpcm)
ta có (a+b)*(c-a)= ac+bc-a2-ab(1)
(a-b)*(c+a)= ac-bc+a2-ab(2)
bỏ ac và -ab ở (1)(2) có
(1)= bc - a2 =0
(2)= a2 - bc = 0
=> Đpcm
Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
a2 = bc
=> a . a = b . c
=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{a+c}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)
đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2) thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)
do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)