K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

29 tháng 7 2018

Đề sai rồi nha bạn  : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )

                                   Bài làm

Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

hok tốt .

29 tháng 7 2018

Ta có: a2 = bc 

          => a.a = b.c

          => \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)\(\frac{a-b}{c-a}\)

Hình như bn ghi sai đề

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

7 tháng 1 2016

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

13 tháng 7 2016

 minh can gap  lam

13 tháng 7 2016

a2 = bc

=> a.a = b.c

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)(Đpcm)

3 tháng 7 2017

ta có (a+b)*(c-a)= ac+bc-a2-ab(1)

 (a-b)*(c+a)= ac-bc+a2-ab(2)

bỏ ac và -ab ở (1)(2) có

(1)= bc - a=0

(2)= a- bc = 0

=> Đpcm

12 tháng 10 2018

Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)

30 tháng 7 2016

a2 = bc

=> a . a = b . c

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{a+c}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

30 tháng 7 2016

Ta có: \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)

\(\Rightarrow ac-a^2+bc-ab=a^2-ab+ac-bc\)

\(\Rightarrow ac-bc+bc-ab-bc+ab-ac+bc=0\)

\(\Rightarrow0=0\) (luôn đúng)

                                                           Vậy đpcm