\(\frac{a}{b}=\frac{b}{c}\)thì \(\frac{a^2+b^2}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)

20 tháng 12 2019

\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

27 tháng 12 2020

Ta có :\(\frac{a}{b}=\frac{b}{c}\)

=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)

27 tháng 12 2020

Cho xem đáp án nhé

3 tháng 1 2018

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ (1) và (2) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

Từ (3) và (4) => \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

TH2: \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b+b-a}{c+d+d-c}=\frac{2b}{2d}=\frac{b}{d}\left(5\right)\)

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b-b+a}{c+d-d+c}=\frac{2a}{2c}=\frac{a}{c}\left(6\right)\)

Từ (5) và (6) => \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

26 tháng 10 2019

\(\frac{b}{c}=\frac{a}{d}\)ở đâu vậy

5 tháng 1 2018

Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)

\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)

\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\) (đpcm)

5 tháng 7 2019

Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)

\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)

\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\)

\(\Rightarrowđpcm\)

18 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(2ab=c\left(a+b\right)\)

\(ab+ab=ca+bc\)

\(ab-cb=ac-ab\)

\(b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

29 tháng 7 2018

Đề sai rồi nha bạn  : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )

                                   Bài làm

Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

hok tốt .

29 tháng 7 2018

Ta có: a2 = bc 

          => a.a = b.c

          => \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)\(\frac{a-b}{c-a}\)

Hình như bn ghi sai đề

4 tháng 2 2020

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)

\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)

\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)