K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

16 tháng 10 2017

ta có \(\left(2n+4\right)\left(3n+5\right)=2\left(n+2\right)\left(3n+5\right)⋮2\)

8 tháng 12 2023

Bạn không nên gửi lại câu hỏi quá nhiều lần nha.

19 tháng 12 2022

a: =>n-1+5 chia hết cho n-1

=>\(n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{2;0;6;-4\right\}\)

b: =>n^2+2n+1-4 chia hết cho n+1

=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: =>3n-6+5 chiahết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

20 tháng 12 2022

a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1)  \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}

b,Theo Bezout  n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3  \(⋮\) n+1

\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}

c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}

\(\in\) { -3; 1; 3; 7}

d, 3n + 1 \(⋮\) 2n - 1 

\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1 

\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1

\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1

\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1

\(\Leftrightarrow\)                 5 \(⋮\) 2n - 1

\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}

\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}

 

 

 

30 tháng 11 2016

2.

Ta có:3n+1 chia hết cho 11-2n

=>3n+1chia hết cho -(2n-11)

=>3n+1 chia hết cho 2n-11

=>2.(3n+1) chia hết cho 2n-11

=>6n+22 chia hết cho 2n-11

=>6n-33+33+22 chia hết cho 2n-11

=>3.(2n-11)+55 chia hết cho 2n-11

=>55 chia hết cho 2n-11

=>2n-11=Ư(55)=(1,5,11,55)

=>2n=(12,16,22,66)

=>n=(6,8,11,33)

Vậy n=6,8,11,33

30 tháng 11 2016

??????????????????????????????????