K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

Dùng phương pháp quy nạp toán học em nhé.

Với n = 1 ta có: 41 + 15.1 - 1 = 18 ⋮ 9 ( đúng)

Giả sử 4n + 15n - 1 ⋮ 9 với n = k (kϵ N)

Ta cần chứng minh 4n + 15n - 1 ⋮9 với n = k + 1

                        ⇔ 4k+1 + 15(k+1) - 1 ⋮ 9

Thật vậy ta có:

    4k + 15k - 1 ⋮ 9 ( theo giả thuyết)

⇔ 4.( 4k + 15k - 1) ⋮ 9

⇔  4k+1 + 60k - 4 ⋮ 9

⇔ 4k+1 + 15k + 45k  + 15 - 1 - 18 ⋮ 9

⇔ 4k+1 + 15k + 15 - 1+ 45k - 18 ⋮ 9

⇔ 4k+1 + 15(k+1) - 1 + 45k - 18 ⋮ 9

⇔ 4k+1 + 15(k+1) - 1 ⋮ 9 ( đpcm)

Vậy 4n + 15n - 1 ⋮ 9 ∀ n ϵ N

1 tháng 5 2023

 mấy anh chị giúp em với ạ

 

12 tháng 11 2019

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

9 tháng 1 2016

  Đặt Un = 16^n-15n-1 
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225 
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225 
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được 
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được 
_________________- 

Với việc chứng minh Vk = 16^k - 1 chia hết cho 15 
- Xét k = 1 , ta có V1 = 15 chia hết cho 15 
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15 
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được 
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2) 

______________ 

Vậy từ (1) và (2) ta có được điều phãi chứng minh

16 đồng dư với 1(mod 15)

=>16n đồng dư với 1(mod 15)

=>16n-1 đồng dư với 0(mod 15)

=>16n-1 chia hết cho 15

mà 15n chia hết cho 15

=>16n-15n-1 chia hết cho 15(đpcm)

7 tháng 1 2016

Gọi cái cần chứng minh là (*)

+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9

+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9

Thật vậy:

4k + 1 + 15(k + 1) - 1

= 4.4k + 15k + 15 - 1

= 4.4k + 15k + 18 - 4 - 45k

= 4.(4k + 15k - 1) - 45k - 18

Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9

=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9 

hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9

=> Phương pháp quy nạp được chứng minh

Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*

7 tháng 1 2016

chứng minh mà ghi kết quả

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)