K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Đặt :

\(A=\)\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(A=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Ta thấy :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{61}+\dfrac{1}{62}\)

\(\Rightarrow A< \dfrac{1}{5}+\left(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow A< \dfrac{10}{20}=\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\rightarrowđpcm\)

1 tháng 7 2016

S=1/5=(1/13+1/14+1/15)+(1/61+1/62+1/63)

suy ra S<1/5+1/12x3+1/60x3

S<1/5+1/4+1/20

=>S<1/2

11 tháng 4 2018

A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63

Ta có : A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63 < 1/5 + 1/12 + 1/12 + 1/12 + 1/60 + 1/60 + 1/60 

               = A < 1/5 + 1/4 + 1/20 

               = A < 1/2

Vậy A < 1/12

7 tháng 4 2016

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)

suy ra S<1/5+1/12.3+1/60.3

S<1/5+1/4+1/20

S<1/2 

7 tháng 4 2016

S<1/2

9 tháng 8 2018

\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)

\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(B=\frac{1}{4}-\frac{1}{12}\)

\(B=\frac{1}{6}\)

9 tháng 8 2018

Tính nhanh : 

B = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132 

B = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12

B = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ...... + 1/11 - 1/12

B = 1/4 - 1/12

B = 3/12  - 1/12

B = 2/12

B = 1/6 

15 tháng 10 2017

Ta co:   B= 1 + 3 +32 + 33 + ....... + 399

                  = (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3) 

               = (1 + 3)(1 + 32 +34 + ......... + 398)

               = 4(1 + 32 +34 + ........... + 398\(⋮\)

    Vay B \(⋮\)

   k cho mk nha

15 tháng 10 2017

B=(1+3)+(32+33)+...+(398+399)

  =(1+3)+32(1+3)+...+398(1+3)

  =4+32.4+.....+398.4

  =4.(1+32+...+398)

vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)

5 tháng 4

a: Ta có

A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)

⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng 

⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)

⇒ A > 1

vậy A > 1

b: ta có

S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)\(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)\(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))

⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))

⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)

⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)

⇔ S > \(\dfrac{107}{210}\)\(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)

vậy S > \(\dfrac{1}{2}\)