Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)
Gọi số trung bình cộng là: \(\overline{X}\)
Gọi a là số bất kì
Theo đề bài ta có:
\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)
Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)
Mà \(N=n_1+n_2+...+n_k\)
Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)
Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)
Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)
N=7.(2007^2009-2013^1999)/10 (1)
{Để chứng minh N nguyên thì cần c/m:2007^2009-2013^1999 chia hết cho 10}
Ta có:
*2007^2009
=2007.(2007^4)^502
=2007.(...1)^502
=2007.(...1)=(...7)
*2013^1999
=2013^3.(2013^4)^499
=(...7).(...1)^499
=(...7).(...1)=(...7)
=>2007^2009-2013^1999
=(..7)-(...7)=(...0)
nên chia hết cho 10 (2)
Từ (1),(2)=>N thuộc Z và N là hợp số vì N chia hết cho 7