K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$2x^2+12x+19=2(x^2+6x+9)+1$

$=2(x+3)^2+1\geq 2.0+1=1>0$ với mọi $x\in\mathbb{R}$

Tức là $2x^2+12x+19\neq 0$ với mọi $x\in\mathbb{R}$

Vậy đa thức đó vô nghiệm.

26 tháng 7 2021

`2x^2+12x+19`

`=2(x^2+6x+19/2)`

`=2(x^2+2.x.3+9+1/2)`

`=2(x^2+2.x.3+3^2)+2.1 /2`

`=2(x+3)^2+1`

Ta thấy : `2(x+3)^2>=0`

`=>2(x+3)^2+1>=1>0`

Vậy đa thức đã cho vô nghiệm

20 tháng 6 2018

Đặt \(f\left(x\right)=-x^2-2x-3\)

\(=-x^2-x-x-3\)

\(=-x.\left(x-1\right)-\left(x-1\right)-2\)

\(=-[-\left(x-1\right)^2]-2\le-2< 0\)

\(\Rightarrow\)Đa thức không có nghiệm

20 tháng 6 2018

Đặt \(A=-x^2-2x-3\)

\(\Rightarrow-A=x^2+2x+3\)

\(-A=\left(x^2+2x+1\right)+2\)

\(-A=\left(x+1\right)^2+2\)

\(\Rightarrow A=-\left(x+1\right)^2-2\)

Ta có: \(-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le2\forall x\)

\(\Rightarrow\) Đa thức vô nghiệm

29 tháng 1 2020

\(2x^2-6x+7=0\)

\(\Leftrightarrow2\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=0\)

\(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2+\frac{19}{4}=0\)

Mà : \(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)

Vậy phương trình vô nghiệm (đpcm)

3 tháng 8 2018

a/ \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

vì: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)

b/ \(4x^2-12x+11=\left(4x^2-2\cdot2x\cdot3+9\right)+2=\left(2x-3\right)^2+2\)

vì: \(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)

c/ \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\left(đpcm\right)\)

31 tháng 8 2020

M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )

= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x

= 2 

Vậy M không phụ thuộc vào biến ( đpcm )

N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3

= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )

= [ 2x - 1 - 2x ]3

= [ -1 ]3 = -1

Vậy N không phụ thuộc vào biến ( đpcm )

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

6 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm 

8 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)

\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

=> Phương trình luôn vô nghiệm

23 tháng 10 2021

a) \(A=-16x^2-48x-40=-\left(16x^2+48x+36\right)-4\)

\(=-\left(4x+6\right)^2-4\le-4< 0\)

Vậy A vô nghiệm

b) \(B=5x^2+12x+20=5\left(x^2+\dfrac{12}{5}x+\dfrac{36}{25}\right)+\dfrac{64}{5}\)

\(=5\left(x+\dfrac{6}{5}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}>0\)

Vậy B vô nghiệm

23 tháng 10 2021

cảm ơn  ạ

23 tháng 10 2021

b: ta có: \(B=5x^2+12x+20\)

\(=5\left(x^2+\dfrac{12}{5}x+4\right)\)

\(=5\left(x^2+2\cdot x\cdot\dfrac{6}{5}+\dfrac{36}{25}+\dfrac{64}{25}\right)\)

\(=5\left(x+\dfrac{6}{5}\right)^2+\dfrac{64}{5}>0\forall x\)