Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^{10}+32^7=\left(2^4\right)^{10}+\left(2^5\right)^7=2^{40}+2^{35}=2^{35}.2^5+3^{35}=2^{35}.\left(2^5+1\right)=2^{35}.33\)
chia hết cho 33
tick nhé
Ta có: A=32.32+25.2-32
=32.32+32.2-32
=32(32+2-1)
=32.33 chia hết cho 33(đpcm)
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)
S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = ( 3 + 32 + 33 ) +34 + 35 + 36 + 37 + 38 + 39
S = 39 + 34 + 35 + 36 + 37 + 38 + 39
Vì 39 ⋮ -39
<=> S ⋮ -39
a: \(=5^{27}+5^{28}-5^{26}\)
\(=5^{26}\left(5+5^2-1\right)=5^{24}\cdot725⋮725\)
b: \(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)
\(=13\cdot\left[\left(1+3^3\right)+3^6\left(1+3^3\right)+...+3^{114}\left(1+3^3\right)\right]\)
\(=13\cdot28\cdot\left(1+3^6+...+3^{114}\right)⋮91\)