K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Bạn tham khảo các câu trả lời của mọi người tại đây:

Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath

Và đây củng chính là Moldova TST 2005

16 tháng 4 2020

Một cách giải khác mình lấy được trên mạng

25 tháng 6 2019

#)Tham khảo trong hai link này nhé :

Chứng minh: $\frac{1}{{4 - ab}} + \frac{1}{{4 - bc}} + \frac{1}{{4 - ca}} \le ...https://diendantoanhoc.net › ... › Toán Trung học Cơ sở › Bất đẳng thức và cực trị

Chứng minh rằng: $\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\leq 1 ...https://diendantoanhoc.net › ... › Toán Trung học Cơ sở › Bất đẳng thức và cực trị

P/s : Vô thống kê hỏi đáp ms dùng đc link nhé !

27 tháng 6 2019

Ta có: \(a^4+b^4+c^4=3\Rightarrow0\le a^4;b^4;c^4\le3\Rightarrow0\le a;b;c\le\sqrt[4]{3}\)

=> \(ab,bc,ac\le\sqrt[4]{9}\)

Xét: \(\frac{18}{4-x}\le x^2+5,\forall0\le x\le\sqrt[4]{9}\)

<=> \(18\le\left(x^2+5\right)\left(4-x\right)\)

<=> \(\left(x-1\right)^2\left(2-x\right)\ge0\)luôn đúng với \(\forall0\le x\le\sqrt[4]{9}\)

Như vậy:

\(\frac{18}{4-ab}+\frac{18}{4-bc}+\frac{18}{4-ac}\le\left(ab\right)^2+5+\left(bc\right)^2+5+\left(ac\right)^2+5\)

\(=\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+15\le\frac{a^4+b^4}{2}+\frac{b^4+c^4}{2}+\frac{a^4+c^4}{2}+15\)

\(=a^4+b^4+c^4+15=18\)

=> \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ac}\le1\)

"=" xảy ra <=> a=b=c=1

23 tháng 12 2018

lp 8 mà khó thế -,- 

Có \(4=a^4+b^4+c^4+1\ge4\sqrt[4]{\left(abc\right)^4}=4abc\)\(\Leftrightarrow\)\(-abc\ge-1\)

\(\Rightarrow\)\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}=\frac{a+b+c}{4-abc}\le\frac{a+b+c}{4-1}=\frac{a+b+c}{3}\)

Lại có \(3=a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\frac{\left(a+b+c\right)^4}{9}}{3}=\frac{\left(a+b+c\right)^4}{27}\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^4\le81\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(\Rightarrow\)\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le\frac{a+b+c}{3}\le\frac{3}{3}=1\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

23 tháng 12 2018

HSG khổ thế đấy cậu :((

25 tháng 3 2017

Ta có: \(a^2+b^2\ge2ab\forall a,b\Rightarrow\frac{1}{4-ab}\le\frac{2}{8-a^2-b^2}\)

Theo BĐT C-S: \(\frac{2}{8-a^2-b^2}\le\frac{1}{2}\left(\frac{1}{4-a^2}+\frac{1}{4-b^2}\right)\)

Do đó: \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\)

Ta có đánh giá sau: \(\frac{1}{4-a^2}\le\frac{a^4+5}{18}\Leftrightarrow\left(a^2-1\right)^2\left(a^2-2\right)\le0\) (Đúng)

Thiết lập các BĐT tương tự rồi cộng theo vế ta có: 

\(\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\le\frac{a^4+5}{18}+\frac{b^4+5}{18}+\frac{c^4+5}{18}=1\)(ĐPCM)

Đẳng thức xảy ra khi \(a=b=c=1\)

25 tháng 3 2017

Cách khác dùng Schur như sau :)

BĐT cần chứng minh tương đương với:

\(16+3abc\left(a+b+c\right)\ge a^2b^2c^2+8\left(ab+bc+ca\right)\)

Mà \(1\ge a^2b^2c^2\). Mặt khác theo BĐT Schur ta có: 

\(\left(a^3+b^3+c^3+3abc\right)\left(a+b+c\right)\ge\)

\(\ge\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\left(a+b+c\right)\)

\(\Leftrightarrow3+3abc\left(a+b+c\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)\)

\(=\left(ad+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2\)

BĐT sẽ được c/m xong nếu ta chỉ ra: 

\(\left(ab+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2+12\ge8\left(ab+bc+ac\right)\) 

Đúng theo BĐT Cô-si

Dấu đẳng thức xảy ra khi \(a=b=c=1\)

1 tháng 3 2018

c+1 hay c-1 vậy  xem lại đề ik 

1 tháng 3 2018

Áp dụng tính chất : 1/x+y < = 1/4.(1/x + 1/y) với x,y > 0 thì :

ab/c+1 = ab/c+a+b+c = ab/(c+a)+(c+b) < = ab/4.(1/c+a + 1/c+b) = 1/4.(ab/c+a + ab/c+b)

Tương tự : bc/a+1 < = 1/4.(bc/a+c + bc/a+b) ; ca/b+a < = 1/4.(ca/b+c + ca/b+a)

=> ab/c+1 + bc/a+1 + ca/b+1 < = 1/4.(ab/c+a + ab/c+b + bc/a+c + bc/a+b + ca/b+c + ca/b+a ) 

= 1/4.[(ab/c+a + bc/a+c) + (ab/c+b + ca/b+c) + (bc/a+b + ca/a+b)]

= 1/4.(a+b+c) = 1/4

=> ĐPCM

Tk mk nha

17 tháng 1 2016

cái này dễ lắm. thế này nhé. \(a^4\ge0\), b và c cũng thế. suy ra để \(a^4+b^4+c^4=3\)thì a,b,c phải bằng 1 (vì a,b,c nguyên dương hay lớn hơn 0). thế là thay vào rồi suy ra biểu thức kia nhỏ hơn hoặc bằng 1 thôi

mình giải đúng 100%. tích đúng cho mình nhé

17 tháng 1 2016

a=b=c=1 

các bạn cho mk vài li-ke cho tròn 820 với 

26 tháng 7 2017

Sai đề bạn ơi

30 tháng 4 2020

Ta có \(a+b+b+b\ge4\sqrt[4]{abbb}\)(theo BĐT Cosi)

\(\Leftrightarrow a+3b\ge\sqrt[4]{ab^3}\)

\(\Leftrightarrow\frac{a+3b}{4}\ge4\sqrt[4]{ab^3}\)

Mà \(a,b,c\ge1\Rightarrow a+3b\ge4\Rightarrow\frac{a+3b}{4}\ge1\)

\(\Leftrightarrow1+\sqrt[4]{ab^3}\ge1+a\)

\(\Rightarrow\frac{1}{1+\sqrt[4]{ab^3}}\le\frac{1}{1+a}\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+\sqrt[4]{bc^3}}=\frac{1}{1+b}\left(2\right)\\\frac{1}{1+\sqrt[4]{ca^3}}=\frac{1}{1+c}\left(3\right)\end{cases}}\)

(1) (2) (3) => \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3+1}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)(đpcm)

NV
10 tháng 10 2020

1.

Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)