K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2020

1.

Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
10 tháng 10 2016

e ơi e nên tải tài liệu của võ quốc bá cẩn đi 

22 tháng 1 2018

đề đúng hay sai vậy

22 tháng 1 2018

Đề đúng bạn ơi

29 tháng 3 2022

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\)

Khi đó \(\frac{a^4}{b+2}=\frac{1}{3}\)

Ta cần ghép \(\frac{a^4}{b+2}\)với hạng tử \(k\left(b+2\right)\)thỏa mãn khi Cô-si thì dấu "=" xảy ra khi \(a=b=1\)

Lại có \(b+2=3\)

Đồng thời khi Cô-si dấu "=" xảy ra khi \(\frac{a^4}{b+2}=k\left(b+2\right)\)hay \(\frac{1}{3}=k.3\)\(\Leftrightarrow k=\frac{1}{9}\)

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a^4}{b+2}\)và \(\frac{b+2}{9}\), ta có:

\(\frac{a^4}{b+2}+\text{​​}\frac{b+2}{9}\ge2\sqrt{\frac{a^4}{b+2}.\frac{b+2}{9}}=\frac{2a^2}{3}\)

Tương tự, ta có \(\frac{b^4}{c+2}+\text{​​}\frac{c+2}{9}\ge2\sqrt{\frac{b^4}{c+2}.\frac{c+2}{9}}=\frac{2b^2}{3}\)và 

\(\frac{c^4}{a+2}+\text{​​}\frac{a+2}{9}\ge2\sqrt{\frac{c^4}{a+2}.\frac{a+2}{9}}=\frac{2c^2}{3}\)

CỘng vế theo vế từng BĐT, ta được \(P+\frac{a+2+b+2+c+2}{9}\ge\frac{2\left(a^2+b^2+c^2\right)}{3}\)

\(\Leftrightarrow P+\frac{\left(a+b+c\right)+6}{9}\ge2\)(vì \(a^2+b^2+c^2=3\)\(\Leftrightarrow P\ge2-\frac{\left(a+b+c\right)+6}{9}\)(1)

Ta chứng minh BĐT phụ \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)(với \(a,b,c>0\))

Thật vậy, BĐT này \(\Leftrightarrow\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vậy BĐT phụ được chứng minh \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3.3}=3\)(2)

Từ (1) và (2) \(\Rightarrow P\ge2-\frac{3+6}{9}=1\)\(\Rightarrow min_P=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 3 2022

t ko bic

27 tháng 1 2020

Theo đề ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) nên:

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\left(a+b+c\right).1\)

Và: \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

Từ trên ta suy ra: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

17 tháng 10 2020

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

5 tháng 10 2016

Đề đúng là \(T=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

Ta có:

\(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\) (chứng minh cái này chắc dễ)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)

Tương tự ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right)\)và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)

Cộng theo vế của (1);(2) và (3) ta có:

\(T\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\)(đpcm)

Dấu = khi \(a=b=c=1\)