Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= abc(bc+a2)(ac+b2)(ab+c2)
Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0
<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0
<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0
<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0 (đúng với mọi a,b,c)
mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!
giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)
\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\) (vì b>0;c>0)
\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0) (1)
c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\) (2)
\(\frac{c+a}{ab+c^2}\le\frac{1}{b}\) (3)
từ (1),(2),(3)=>đpcm
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\sqrt{\frac{a}{a+bc}}=\frac{a}{\sqrt{a^2+abc}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Tương tự \(\sqrt{\frac{b}{b+ca}}=\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}};\sqrt{\frac{c}{c+ab}}=\frac{c}{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow VT=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le\frac{a}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{2}\left(\frac{1}{b+c}+\frac{1}{b+a}\right)+\frac{c}{2}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
\(=\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c=3\)
ta có a > 0 → b + c < 1
→ 4bc < (b + c)² < 1
→ bc < 1\4
tương tự với ab, ac là => dpcm
ta có a > 0 → b + c < 1
→ 4bc < (b + c)² < 1
→ bc < 1\4
tương tự với ab, ac là => dpcm
Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )
bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé
đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)
áp dụng định lí six paths of Pain :) ta có
\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì
thay vào ta được :)
\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
áp dụng cô si sáp cho 2 số ta có
\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng
\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng
\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng
cộng các vế lại ta được và rút 2/2 ta được :))
\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hình như BDT đã được chứng minh :))
theo bài của bạn Phạm quốc cường ta có :))
\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))
tức là \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))
tức là định Lí six paths of Pain luôn đúng :))
dấu = xảy ra khi nào thì mình éo biết được :))
: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )
\(\Leftrightarrow\) ĐPCM
c+1 hay c-1 vậy xem lại đề ik
Áp dụng tính chất : 1/x+y < = 1/4.(1/x + 1/y) với x,y > 0 thì :
ab/c+1 = ab/c+a+b+c = ab/(c+a)+(c+b) < = ab/4.(1/c+a + 1/c+b) = 1/4.(ab/c+a + ab/c+b)
Tương tự : bc/a+1 < = 1/4.(bc/a+c + bc/a+b) ; ca/b+a < = 1/4.(ca/b+c + ca/b+a)
=> ab/c+1 + bc/a+1 + ca/b+1 < = 1/4.(ab/c+a + ab/c+b + bc/a+c + bc/a+b + ca/b+c + ca/b+a )
= 1/4.[(ab/c+a + bc/a+c) + (ab/c+b + ca/b+c) + (bc/a+b + ca/a+b)]
= 1/4.(a+b+c) = 1/4
=> ĐPCM
Tk mk nha