Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y=z\)
Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)
Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)
\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)
Vậy A = 2019
\(P=\frac{2019xz}{xyz+2019xz+2019z}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{2019xz}{2019+2019xz+2019z}+\frac{y}{y\left(xz+z+1\right)}+\frac{z}{xz+z+1}\)
\(\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=1\)