K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NQ
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
BM
0
HA
0
TV
2
30 tháng 8 2021
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
MB
1
26 tháng 6 2017
Ta có (x + y +z)² ≥ 0 suy ra x² + y² + z² + 2 ( xy + yz + zx) ≥ 0
1 + 2 ( xy + yz + zx) ≥ 0
xy + yz + zx ≥ - 1 / 2
Thế thì min (xy + yz + zx) = - 1 / 2 khi x+ y + z = 0 và x² + y² + z² = 1 ( ♥ )
Lại có I xz I = I x I I z I ≤ 1 / 2 ( x² + z² ) = 1 / 2 ( 1 - y² ) ≤ 1 / 2
Thế thì min ( xz ) = - 1 / 2 khi x = - z và x² + y² + z² = 1 và y = 0 ( ♣ )
Từ ( ♥ ) và ( ♣ ) cho ta
min ( xy + yz + 2.zx ) = - 1 / 2 - 1 / 2 = - 1
khi x = √2 / 2 ; y = 0 ; z = - √2 / 2 chẳng hạn
P/C bạn dựa vào đk x + y + z = 0 ; x² + y² + z² = 1;y = 0 ; x = - z
Ta có đẳng thức:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
hoặc bạn áp dụng hệ thức holder á
Ta có:
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Mặt khác:
\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)
hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)
Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)