K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Với x,y,z dương

Ta có:(x-y)2\(\ge0\forall x;y\)

=>x2+y2\(\ge\)2xy

Dấu = xảy ra khi x=y

Tương tự y2+z2\(\ge\)2yz

z2+x2\(\ge\)2zx

Cộng vế với vế 3 BĐT =>2(x2+y2+z2)\(\ge\)2(xy+yz+zx)

<=>x2+y2+z2\(\ge\)xy+yz+zx

<=>\(\dfrac{3}{xy+yz+zx}\ge\dfrac{3}{x^2+y^2+z^2}\)

Dấu = xảy ra khi và chỉ khi x=y=z

=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{5}{x^2+y^2+z^2}\)

Áp dụng BĐT bunhiacopski:

\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^3}\right)\le\left(\dfrac{x+y+z}{3}\right)^2=\dfrac{1}{3^2}=\dfrac{1}{9}\)(Do x+y+z=1)

Dấu = xảy ra khi và chỉ khi \(\dfrac{x}{3}=\dfrac{y}{3}=\dfrac{z}{3}\)<=>x=y=z

=>\(\dfrac{5}{x^2+y^2+z^2}=\dfrac{5}{3\cdot\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}\right)}\ge\dfrac{5}{3\cdot\dfrac{1}{9}}=15\)

=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge15\)(đpcm)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\z+y+z=1\end{matrix}\right.\)<=>x=y=z=\(\dfrac{1}{3}\)

18 tháng 5 2017

hình như sai r thì phải ( chỗ bunhia)

10 tháng 7 2017

\(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

11 tháng 7 2017

a, Giải phương trình \(x^2-x-2=0\)

\(=''-1''^2-4\times1\times''-2''=1+8\) lớn hơn \(0\)

\(\sqrt{\Delta}=\sqrt{9}=3\)

\(\Rightarrow x_1=-1;x_2=2\)

b, Vẽ đồ thị bảng số 

- Hàm số \(y=x^2\) 

- Hàm số \(y=x+2\)

+ Cho \(x=0\Rightarrow2\) được điểm A '' 0,2 ''

+ Cho \(x=2\Rightarrow y=0\) được điềm '' -2 ; 0 '' 

Đồi thị hàm số

5 tháng 2 2020

Câu 1:

\(y^2+yz+z^2=1-\frac{3x^2}{2}\)

\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)

\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)

\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)

\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)

\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)

Câu 2:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Câu 3:

\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )

\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng BĐT Cauchy:

\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)

\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

Câu 4:

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)

\(M=a^2-2ab+3b^2-2a+1\)

\(M=a^2-a\left(2b+2\right)+3b^2+1\)

\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)

\(=-8b^2+8b\)

\(=-8b\left(b+1\right)\ge0\)

\(b\ge0\) nên \(-8b\left(b+1\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow b=0\)

Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

5 tháng 2 2020

Cau này e nghĩ không đáng là câu hỏi hay:v

NV
7 tháng 6 2020

\(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(P=\frac{3x+3y+2z}{\sqrt{\left(3x+3y\right)\left(2x+2z\right)}+\sqrt{\left(3x+3y\right)\left(2y+2z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(P\ge\frac{2\left(3x+3y+2z\right)}{3x+3y+2x+2z+3x+3y+2y+2z+x+z+y+z}\)

\(P\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2\left(3x+3y+2z\right)}{3\left(3x+3y+2z\right)}=\frac{2}{3}\)

\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)