Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)
\(A=-y^2+4y-2z^2+8z\)
\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)
\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)
Ta có đẳng thức:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
hoặc bạn áp dụng hệ thức holder á
Ta có:
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Mặt khác:
\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)
hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)
Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
bạn học lớp 8A THCS Đền Lừ à