Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)
a, B,C,D,E cùng thuộc đường tròn đường kính BC
b, BC là đường kính, ED dây không qua tâm => ĐPCM
1) Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
nên BCDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,C,D,E cùng thuộc 1 đường tròn(đpcm)
Lời giải:
Xét tứ giác $BCDE$ có\(\widehat{BEC}=\widehat{BDC}=90^0\) nên $BCDE$ là tứ giác nội tiếp
\(\Rightarrow \widehat{AED}=\widehat{ACB}\)
Do đó \(\triangle ADE\sim \triangle ABC\) (g.g)
\(\Rightarrow \frac{AD}{AB}=\frac{DE}{BC}=\frac{AM}{AH}\) (trong đó $AM, AH$ tương ứng là đường cao của 2 tam giác $ADE, ABC$)
\(\Rightarrow \frac{DE}{BC}.\frac{AM}{AH}=\left(\frac{AD}{AB}\right)^2\)
\(\Rightarrow \frac{2S_{ADE}}{2S_{ABC}}=\cos ^2A\Rightarrow S_{ADE}=S_{ABC}\cos ^2A\)
\(\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}(1-\cos ^2A)=S_{ABC}\sin ^2A\)
Ta có đpcm.
a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc một đường tròn
Ta có: ∆ABD ~ ∆ACE( g.g) => A D A B = A E A C
=> S A D E S A B C = A E A C 2
Mà trong ∆ACE có cosA = A E A C
=> S A D E S A B C = cos A 2
=> S A D E = S A B C . cos 2 A