K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :

\(AB^2+AC^2=BC^2\)

=> \(BC^2=3^2+4^2=25\)

=> \(BC=5\left(cm\right)\)

- Xét tam giác ABC có trung tuyến AM ứng với cạnh huyền BC .

=> \(AM=\frac{1}{2}BC=\frac{1}{2}5=\frac{5}{2}\left(cm\right)\)

b, - Xét tứ giác AEMF có : \(\left\{{}\begin{matrix}EM//AC\left(\perp AB\right)\\MF//AB\left(\perp AC\right)\end{matrix}\right.\)

=> Tứ giác AEMF là hình bình hành .

Lại có góc BAC = 90o ( tam giác vuông )

=> Tứ giác AEMF là hình chữ nhật .

=> AM = EF ( tính chất HCN )

5 tháng 4 2020

giải hộ mình câu c với câu d đi ạ

6 tháng 4 2020

I,M là trung điểm BF,BC nên IM là đường TB \(\Delta BFC\)

\(\Rightarrow\)IM//AC nên AIMK là hình thang

Lại có \(\Delta ABF\) với I là trung điểm BF nên AI=1/2BF(2)

Có K,M là trung điểm CF,BC nên MK là đường TB \(\Delta BFC\)

\(\Rightarrow MK=\frac{1}{2}BF\left(2\right)\)

Từ (1),(2) có AIMK là hình thang có 2 cạnh bên bằng nhau

-Từ đây ta sẽ có: AIMK là hbh hoặc AIMK là hình thang cân

Ta sẽ dùng chứng minh phản chứng để CM AIMK là hình thang cân. Giả sử AIMK là hbh : ta sẽ có: AI//MK

Mà MK//BF( MK là đ/TB)

Nên AI//BF ( vô lí, vì AI là trung tuyến ứng với BF)

Từ đó AIMK ko là hbh suy ra AIMK là hình thang cân

6 tháng 4 2020

IK=1/2BC, AM=1/2BC nên IK=AM suy ra ĐPCM là ngắn hơn

5 tháng 4 2020

A B C M 3 4 E F H k I

Bài làm

a) Xét tam giác ABC vuông tại A có:

Theo định lí Py-ta-go có:

BC2 = AB2 + AC2

hay BC2 = 32 + 42

=> BC2 = 9 + 16

=> BC2 = 25

=> BC = 5 ( cm )

Vì tam giác ABC vuông tại A

Mà AM trung tuyến

=> AM = BM = MC = BC/2 = 5/2 = 2,5 ( cm )

b) Ta có: MF vuông góc với AC

AB vuông góc với AC

=> MF // AB => MF // AE

Lại có: ME vuông góc với AB

AB vuông góc với AC

=> ME // AC => ME // AF

Xét tứ giác AEMF có:

EM // AF ( cmt )

MF // AE ( cmt )

=> AEMF là hình bình hành

Mà góc EAF = 90o

=> AEMF là hình chữ nhật.

=> EF = AM ( hai đường chéo )

c) Xét tam giác AHB vuông tại H có:

\(\widehat{HAB}+\widehat{B}=90^0\) (1)

Xét tam giác ABC vuông tại A có:

\(\widehat{B}+\widehat{C}=90^0\) (2)

Từ (1) và (2) => \(\widehat{HAB}=\widehat{C}\) (3)

Vì AM = MC ( cmt )

=> Tam giác MAC cân tại M

=> \(\widehat{MAC}=\widehat{C}\) (4)

Từ (3) và (4) => \(\widehat{HAB}=\widehat{MAC}\)

d) ( * Ăn cơm xg mik lm tiếp cho )

5 tháng 4 2020

giải hộ mik câu d đi cậu

loading...  loading...  loading...  

a: Xét tứ giác BMEC có ME//BC

nên BMEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMEC là hình thang cân

b: Xét ΔABC có 

M là trung điểm của AB

ME//BC

Do đó: E là trung điểm của AC

Xét ΔABC có 

M là trung điểm của AB

MF//AC

Do đó: F là trung điểm của BC

Xét ΔABC có 

M là trung điểm của AB

F là trung điểm của BC

Do đó: MF là đường trung bình của ΔBAC

Suy ra: \(MF=\dfrac{AC}{2}\)

mà \(EC=\dfrac{AC}{2}\)

nên MF=EC

Xét tứ giác MECF có 

MF//EC

MF=EC

Do đó: MECF là hình bình hành

c: Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của AC

Do đó: ME là đường trung bình của ΔABC

Suy ra: ME//BC và \(ME=\dfrac{BC}{2}\)

mà \(BF=\dfrac{BC}{2}\)

nên ME//BF và ME=BF

Xét tứ giác MEFB có 

ME//BF

ME=BF

Do đó: MEFB là hình bình hành

Suy ra: Hai đường chéo MF và BE cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MF

nên I là trung điểm của BE

hay B,I,E thẳng hàng