Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :
\(AB^2+AC^2=BC^2\)
=> \(BC^2=3^2+4^2=25\)
=> \(BC=5\left(cm\right)\)
- Xét tam giác ABC có trung tuyến AM ứng với cạnh huyền BC .
=> \(AM=\frac{1}{2}BC=\frac{1}{2}5=\frac{5}{2}\left(cm\right)\)
b, - Xét tứ giác AEMF có : \(\left\{{}\begin{matrix}EM//AC\left(\perp AB\right)\\MF//AB\left(\perp AC\right)\end{matrix}\right.\)
=> Tứ giác AEMF là hình bình hành .
Lại có góc BAC = 90o ( tam giác vuông )
=> Tứ giác AEMF là hình chữ nhật .
=> AM = EF ( tính chất HCN )
Bài làm
a) Xét tam giác ABC vuông tại A có:
Theo định lí Py-ta-go có:
BC2 = AB2 + AC2
hay BC2 = 32 + 42
=> BC2 = 9 + 16
=> BC2 = 25
=> BC = 5 ( cm )
Vì tam giác ABC vuông tại A
Mà AM trung tuyến
=> AM = BM = MC = BC/2 = 5/2 = 2,5 ( cm )
b) Ta có: MF vuông góc với AC
AB vuông góc với AC
=> MF // AB => MF // AE
Lại có: ME vuông góc với AB
AB vuông góc với AC
=> ME // AC => ME // AF
Xét tứ giác AEMF có:
EM // AF ( cmt )
MF // AE ( cmt )
=> AEMF là hình bình hành
Mà góc EAF = 90o
=> AEMF là hình chữ nhật.
=> EF = AM ( hai đường chéo )
c) Xét tam giác AHB vuông tại H có:
\(\widehat{HAB}+\widehat{B}=90^0\) (1)
Xét tam giác ABC vuông tại A có:
\(\widehat{B}+\widehat{C}=90^0\) (2)
Từ (1) và (2) => \(\widehat{HAB}=\widehat{C}\) (3)
Vì AM = MC ( cmt )
=> Tam giác MAC cân tại M
=> \(\widehat{MAC}=\widehat{C}\) (4)
Từ (3) và (4) => \(\widehat{HAB}=\widehat{MAC}\)
d) ( * Ăn cơm xg mik lm tiếp cho )
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc FAE=90 độ
=>AEMF là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔABC có
m là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔCAB có MF//AB
nên MF/AB=CM/CB=1/2
=>MF=1/2BA=EB
mà MF//EB
nên MFEB là hbh
b: AEMF là hcn
=>AM cắt EF tại trung điểm của mỗi đường
=>O là trung điểm của EF
=>OE=OF
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔCAB có
M là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔABC có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF=BC/2 và EF//BC
b: ΔHAC vuông tại H có HF là đường trung tuyến
nên HF=AC/2
Xét ΔBAC có ME//AC
nên ME/AC=BM/BC=1/2
=>ME=1/2AC
=>ME=HF
Xét tứ giác MHEF có
MH//EF
ME=HF
=>MHEF là hình thang cân
I,M là trung điểm BF,BC nên IM là đường TB \(\Delta BFC\)
\(\Rightarrow\)IM//AC nên AIMK là hình thang
Lại có \(\Delta ABF\) với I là trung điểm BF nên AI=1/2BF(2)
Có K,M là trung điểm CF,BC nên MK là đường TB \(\Delta BFC\)
\(\Rightarrow MK=\frac{1}{2}BF\left(2\right)\)
Từ (1),(2) có AIMK là hình thang có 2 cạnh bên bằng nhau
-Từ đây ta sẽ có: AIMK là hbh hoặc AIMK là hình thang cân
Ta sẽ dùng chứng minh phản chứng để CM AIMK là hình thang cân. Giả sử AIMK là hbh : ta sẽ có: AI//MK
Mà MK//BF( MK là đ/TB)
Nên AI//BF ( vô lí, vì AI là trung tuyến ứng với BF)
Từ đó AIMK ko là hbh suy ra AIMK là hình thang cân
IK=1/2BC, AM=1/2BC nên IK=AM suy ra ĐPCM là ngắn hơn