K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

I,M là trung điểm BF,BC nên IM là đường TB \(\Delta BFC\)

\(\Rightarrow\)IM//AC nên AIMK là hình thang

Lại có \(\Delta ABF\) với I là trung điểm BF nên AI=1/2BF(2)

Có K,M là trung điểm CF,BC nên MK là đường TB \(\Delta BFC\)

\(\Rightarrow MK=\frac{1}{2}BF\left(2\right)\)

Từ (1),(2) có AIMK là hình thang có 2 cạnh bên bằng nhau

-Từ đây ta sẽ có: AIMK là hbh hoặc AIMK là hình thang cân

Ta sẽ dùng chứng minh phản chứng để CM AIMK là hình thang cân. Giả sử AIMK là hbh : ta sẽ có: AI//MK

Mà MK//BF( MK là đ/TB)

Nên AI//BF ( vô lí, vì AI là trung tuyến ứng với BF)

Từ đó AIMK ko là hbh suy ra AIMK là hình thang cân

6 tháng 4 2020

IK=1/2BC, AM=1/2BC nên IK=AM suy ra ĐPCM là ngắn hơn

5 tháng 4 2020

a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :

\(AB^2+AC^2=BC^2\)

=> \(BC^2=3^2+4^2=25\)

=> \(BC=5\left(cm\right)\)

- Xét tam giác ABC có trung tuyến AM ứng với cạnh huyền BC .

=> \(AM=\frac{1}{2}BC=\frac{1}{2}5=\frac{5}{2}\left(cm\right)\)

b, - Xét tứ giác AEMF có : \(\left\{{}\begin{matrix}EM//AC\left(\perp AB\right)\\MF//AB\left(\perp AC\right)\end{matrix}\right.\)

=> Tứ giác AEMF là hình bình hành .

Lại có góc BAC = 90o ( tam giác vuông )

=> Tứ giác AEMF là hình chữ nhật .

=> AM = EF ( tính chất HCN )

5 tháng 4 2020

giải hộ mình câu c với câu d đi ạ

5 tháng 4 2020

A B C M 3 4 E F H k I

Bài làm

a) Xét tam giác ABC vuông tại A có:

Theo định lí Py-ta-go có:

BC2 = AB2 + AC2

hay BC2 = 32 + 42

=> BC2 = 9 + 16

=> BC2 = 25

=> BC = 5 ( cm )

Vì tam giác ABC vuông tại A

Mà AM trung tuyến

=> AM = BM = MC = BC/2 = 5/2 = 2,5 ( cm )

b) Ta có: MF vuông góc với AC

AB vuông góc với AC

=> MF // AB => MF // AE

Lại có: ME vuông góc với AB

AB vuông góc với AC

=> ME // AC => ME // AF

Xét tứ giác AEMF có:

EM // AF ( cmt )

MF // AE ( cmt )

=> AEMF là hình bình hành

Mà góc EAF = 90o

=> AEMF là hình chữ nhật.

=> EF = AM ( hai đường chéo )

c) Xét tam giác AHB vuông tại H có:

\(\widehat{HAB}+\widehat{B}=90^0\) (1)

Xét tam giác ABC vuông tại A có:

\(\widehat{B}+\widehat{C}=90^0\) (2)

Từ (1) và (2) => \(\widehat{HAB}=\widehat{C}\) (3)

Vì AM = MC ( cmt )

=> Tam giác MAC cân tại M

=> \(\widehat{MAC}=\widehat{C}\) (4)

Từ (3) và (4) => \(\widehat{HAB}=\widehat{MAC}\)

d) ( * Ăn cơm xg mik lm tiếp cho )

5 tháng 4 2020

giải hộ mik câu d đi cậu

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6

18 tháng 11 2015

tick cho mình rồi mình giải cho

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ

 

31 tháng 10 2017

câu a với câu b làm rồi

22 tháng 8 2017

Kéo dài MN cắt AB tại D => CA; MD là đường cao tg CBD => K là trực tâm=> BK _|_CD (1*) 

Mà AH//MD \(\Rightarrow\) \(\frac{BA}{BD}=\frac{BH}{BM}\Rightarrow\frac{2BN}{BD}=\frac{BH}{BM}\Rightarrow\frac{BN}{BD}=\frac{BH}{2BM}=\frac{BH}{BC}\Rightarrow\)NH//CD (2*) 

Từ (1*,2*) => BK _|_HN\(\Rightarrowđcpm\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)