Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
Vậy \(BC=15cm\).
b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến
\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)
\(\Rightarrow AM=\frac{1}{2}.15=7,5\)
Ta có: 2 đường trung truyến AM và BN cắt nhau tại G
\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)
Vậy \(AG=5cm\).
c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:
BN = DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)
AN = CN (vì N là trung điểm của AC)
\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\) (đpcm)
a. Áp dụng đinh lí Py - ta - go vào Δ ABC vuông tại A:
BC2 = AC2 + AB2
BC2 = 122 + 92 = 144 + 81 = 225
=> BC = 15 cm (BC > 0)
câu b mik chưa biết làm. Sorry bạn :(
a) Theo bài ra: vuông tại A
áp dụng Định lý Pytago ta có
b)
Trong tam giác vuông ABC có trung tuyến AM nên
AG = ...
a) Theo bài ra: \(\Delta ABC\) vuông tại A
\(\Rightarrow\)Áp dụng Định lý Pytago ta có :
\(AB^2AC^2=AB^2\rightarrow AB^2=9^2+12^2=BC=\sqrt{255}=\)15(cm)
b)
Trong tam giác vuông ABC có trung tuyến AM nên : AM=BC: 2 =\(\frac{15}{2}\)
\(\rightarrow\)AG = ...