K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py - ta - go)

thay số: \(6^2+8^2=BC^2\)

\(\Rightarrow BC^2=100\)

\(\Rightarrow BC=10cm\)

ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (2)

Từ (1); (2) => AD < DC

xin lỗi bn nha! mk ko bít kẻ hình trên này, nên mk ko kẻ cho bn đc đâu

20 tháng 2 2023

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

⇒ΔABD=ΔEBD(ch−gn)⇒Δ���=Δ���(�ℎ−��)

b) Xét tam giác ABC vuông tại A

có: AB2+AC2=BC2��2+��2=��2 ( py - ta - go)

thay số: 62+82=BC262+82=��2

⇒BC2=100⇒��2=100

⇒BC=10cm⇒��=10��

ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

⇒ΔADI=ΔEDC(cgv−gn)⇒Δ���=Δ���(���−��)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (a)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (b)

Từ (a); (b) => AD < DC.

cre baji

ngaingung

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADI}=\widehat{EDC}\)

Do đó:ΔADI=ΔEDC

Suy ra: AI=EC

Ta có: BA+AI=BI

BE+EC=BC

mà BA=BE

và AI=EC

nên BI=BC

hayΔBIC cân tại B

d: Ta có: AD=DE

mà DE<DC

nên AD<DC

1 tháng 3 2022

Cảm ơn bạn nhìu nha

 

16 tháng 5 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)

thay số: \(6^2+8^2=BC^2\)

          \(\Rightarrow BC^2=100\)

              \(\Rightarrow BC=10cm\)

mà \(E\in BC\)

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC

mk ko bít kẻ hình trên này!

1 tháng 5 2017

HINH VE DAU?

1 tháng 5 2017

a, xet tam giac ADB va tam giac EBD co:

goc ABD = goc EBD (vi BD la tia phan giac cua goc B)

BD chung

goc BAD = goc BED (=90 do)

suy ra tam giac ADB = tam giac EBD 

b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:

BC^2 = AB ^2 + AC^2

     =   6^2 + 8^2

     =  36+64

     =100 suy ra BC = 10

ta co tam giac ABC = tam giac EBD nen AB = BE = 6 

ta co EC = BC - BE

             = 10 - 6

             =4

c,d ban tu lm

      

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

28 tháng 4

Hình đâu 

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF

a: BC=căn 4^2+3^2=5cm

AC<AB<BC

=>góc B<góc C<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

góc EBF chung

=>ΔBEF đồng dạng với ΔBAC

=>BF=BC