Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
a) Ta có
+)AM=AB-BM=6-3,75=2,25
+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)
=> AN=3(cm)
CN=AC-AN=8-3=5(cm)
b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)
+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)
(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)
=> BI=CI => I là trung điểm BC
c) \(\Delta\)ABC vuông tại A
=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)
=> BC=10cm
Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)
=> BN là phân giác \(\widehat{ABC}\)
https://olm.vn/hoi-dap/detail/5736377385.html
bn vào đi ~
a) Ta có BM = CN và I là trung điểm của BC, K là trung điểm của MN. Vậy ta có BI = CK và IM = KN.
Do đó, ta có:
IK = IM + MK = KN + MK = KM
Vậy tam giác IKQ có hai cạnh bằng nhau là IK = KQ. Do đó, tam giác IKQ là tam giác cân.
b) Ta có BI = CK và IM = KN (vì I, K lần lượt là trung điểm của BC, MN).
Giả sử giao điểm của IK và AB là D, giao điểm của IK và AC là E.
Ta có:
BD = DC (vì I là trung điểm của BC)
IM = KN (vì K là trung điểm của MN)
Do đó, theo nguyên lý đồng dạng tam giác, ta có:
∠IDB = ∠EDC (cùng là góc nội tiếp cùng cung BD)
∠IMK = ∠KNQ (cùng là góc nội tiếp cùng cung MK)
Vậy ta có:
∠IDB = ∠EDC
∠IMK = ∠KNQ
Từ đó suy ra:
∠IDB + ∠IMK = ∠EDC + ∠KNQ
Nhưng ta cũng biết rằng:
∠IDB + ∠IMK = ∠BID
∠EDC + ∠KNQ = ∠CED
Vậy ∠BID = ∠CED, tức là góc tạo bởi IK và các đường thẳng AB, AC là bằng nhau.