Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) II là điểm trên cạnh BCBC mà: 2CI=3BI⇒BICI=232CI=3BI⇒BICI=23
⇒BICI+BI=23+2⇒BIBC=25⇒BICI+BI=23+2⇒BIBC=25
⇒BI=25BC⇒BI=25BC tương tự IC=35BCIC=35BC
JJ là điểm trên BCBC kéo dài: 5JB=2JC⇒JBJC=255JB=2JC⇒JBJC=25
⇒JBJC−JB=25−2⇒JBBC=23⇒JBJC−JB=25−2⇒JBBC=23
⇒JB=23BC⇒JB=23BC và BC=35JCBC=35JC
→AB=→AI+→IBAB→=AI→+IB→
=→AI−25→BC=AI→−25BC→
=→AI−25.32→JB=AI→−25.32JB→
=→AI−35→JB=AI→−35JB→
=→AI−35(→JA+→AB)=AI→−35(JA→+AB→)
=→AI+35→AJ−35→AB=AI→+35AJ→−35AB→
⇒→AB+35→AB=→AI+35→AJ⇒AB→+35AB→=AI→+35AJ→
⇒→AB=58→AI+38→AJ⇒AB→=58AI→+38AJ→
→AC=→AI+→ICAC→=AI→+IC→
=→AI+35→BC=AI→+35BC→
=→AI+35.35→JC=AI→+35.35JC→
=→AI+925(→JA+→AC)=AI→+925(JA→+AC→)
⇒→AC−925→AC=→AI−925→AJ⇒AC→−925AC→=AI→−925AJ→
⇒→AC=2516→AI−916→AJ⇒AC→=2516AI→−916AJ→
⇒52→AB=2516→AI+1516→AJ⇒52AB→=2516AI→+1516AJ→
và →AC=2516→AI−916→AJAC→=2516AI→−916AJ→
Trừ vế với vế ta có:
52→AB−→AC=32→AJ52AB→−AC→=32AJ→
⇒→AJ=53→AB−23→AC
\(3\overrightarrow{BI}=2\overrightarrow{IC}\Rightarrow3\overrightarrow{BI}=2\overrightarrow{IB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{BI}=\frac{2}{5}\overrightarrow{BC}\)
\(5\overrightarrow{JB}=2\overrightarrow{JC}\Leftrightarrow5\overrightarrow{JB}=2\overrightarrow{JB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{JB}=\frac{2}{3}\overrightarrow{BC}\)
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}=\overrightarrow{AB}-\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}\)
\(\left\{{}\begin{matrix}2\overrightarrow{CI}=-3\overrightarrow{BI}\\5\overrightarrow{JB}=2\overrightarrow{JC}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\overrightarrow{CB}+2\overrightarrow{BI}=-3\overrightarrow{BI}\\5\overrightarrow{JB}=2\overrightarrow{JB}+2\overrightarrow{BC}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{BI}=-\frac{2}{5}\overrightarrow{BC}\\\overrightarrow{JB}=\frac{2}{3}\overrightarrow{BC}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}-\frac{2}{5}\overrightarrow{BC}\\\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\overrightarrow{AB}-\frac{2}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{7}{5}\overrightarrow{AB}-\frac{2}{5}\overrightarrow{AC}\\\overrightarrow{AJ}=\overrightarrow{AB}-\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7\overrightarrow{AB}-2\overrightarrow{AC}=5\overrightarrow{AI}\\5\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AJ}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\frac{5}{2}\overrightarrow{AI}-\frac{3}{2}\overrightarrow{AJ}\\\overrightarrow{AC}=\frac{25}{4}\overrightarrow{AI}-\frac{21}{4}\overrightarrow{AJ}\end{matrix}\right.\)
\(\overrightarrow{AG}=\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\frac{1}{3}\left(\frac{5}{2}\overrightarrow{AI}-\frac{3}{2}\overrightarrow{AJ}+\frac{25}{4}\overrightarrow{AI}-\frac{21}{4}\overrightarrow{AJ}\right)=...\)
Mình đang cần cách giải bài này mà không cần dựa vào vecto AB, AC á bạn
Bài 1:
Gọi M là trung điểm của AD
\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)
\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)
a: CI+BI=CB
=>\(\dfrac{3}{2}BI+BI=CB\)
=>\(\dfrac{5}{2}BI=CB\)
=>\(BI=\dfrac{2}{5}BC\)
=>\(CI=\dfrac{3}{2}\cdot BI=\dfrac{3}{2}\cdot\dfrac{2}{5}CB=\dfrac{3}{5}CB\)
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)
\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)
\(=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)
JB=2/5JC mà J không nằm trong đoạn thẳng BC
nên B nằm giữa J và C
=>JB+BC=JC
=>\(BC+\dfrac{2}{5}JC=JC\)
=>\(BC=\dfrac{3}{5}JC\)
\(\dfrac{JB}{BC}=\dfrac{\dfrac{2}{5}JC}{\dfrac{3}{5}JC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)
=>\(JB=\dfrac{2}{3}BC\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)
b:
Gọi giao điểm của AG với BC là M
G là trọng tâm của ΔABC
nên AG cắt BC tại trung điểm M của BC
=>\(AG=\dfrac{2}{3}AM\)
Xét ΔABC có AM là trung tuyến
nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
=>\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)
\(\overrightarrow{AG}=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC};\overrightarrow{AI}=\dfrac{3}{5}\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC};\overrightarrow{AJ}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\cdot\overrightarrow{AC}\)
Ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{3}=x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}\\\dfrac{1}{3}=x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}=\dfrac{1}{3}\\x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+25y=5\\6x-10y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}18x+50y=10\\18x-30y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80y=-5\\6x-10y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\6x=10y+5=-\dfrac{5}{8}+5=\dfrac{35}{8}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\x=\dfrac{35}{48}\end{matrix}\right.\)
Vậy: \(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)
\(5\overrightarrow{JB}=2\overrightarrow{JC}=2\left(\overrightarrow{JB}+\overrightarrow{BC}\right)=2\overrightarrow{JB}+2\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{JB}=\dfrac{2}{3}\overrightarrow{BC}=2\overrightarrow{BA}+2\overrightarrow{AC}\Rightarrow\overrightarrow{BJ}=2\overrightarrow{AB}-2\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}+2\overrightarrow{AB}-2\overrightarrow{AC}=3\overrightarrow{AB}-2\overrightarrow{AC}\)