K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

a) Xét Δ ABI và Δ BDI ta có :

BD=BA (đề bài)

Góc ABI = Góc IBD (BI là phân giác góc ABC)

BI là cạnh chung

⇒ Δ ABI = Δ BDI (cạnh, góc, cạnh)

⇒ IA=ID

b) Gọi E là giao điểm của BI và AD

Ta có : BD=BA

⇒ Δ ABD là Δ cân tại B

mà   BE là đường phân giác (BI là phân giác và B,E,I thẳng hàng)

⇒ BE là đường cao Δ ABD

⇒ BE \(\perp\) AD

⇒ BI \(\perp\) AD

mà BD=BA (đề bài) và ID=IA (cmt)

⇒ BI là đường trung trực của AD

c) vì Δ ABI = Δ BDI

mà A=90o , Góc ABI = Góc IBD

⇒ Góc BDI = 90o 

⇒ ID \(\perp\) BC

d) Xét Δ ABI và Δ BAM ta có :

AM=AI (đề bài)

Góc BAI = Góc BAM =90o (do M,A,I thẳng hàng)

AB là cạnh chung

⇒ Δ ABI = Δ BAM (cạnh, góc, cạnh)

⇒ Góc ABI= Góc ABM

⇒ AB là phân giác góc MBI

e) BM=BI (Δ ABI = Δ BAM)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

15 tháng 5 2016

A C B I D E

15 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có 

IB chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔAIB=ΔDIB

b: Ta có: ΔAIB=ΔDIB

nên AI=DI; BA=BD

Ta có: IA=ID

nên I nằm trên đường trung trực của AD(1)

Ta có: BA=BD

nên B nằm trên dường trung trực của AD(2)

Từ (1) và (2) suy ra BI⊥AD

c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC

Xét ΔBEC có

BA/AE=BD/DC

nên AD//EC

d: Xét ΔIEC có IE=IC

nên ΔIEC cân tại I

21 tháng 4 2022

Tham khảo:

 

 

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

9 tháng 5 2022

tôi ko biết

b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có 

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra: BA=BD và IA=ID

Ta có: BA=BD

nên B nằm trên đường trung trực của AD\(\left(1\right)\)

Ta có: IA=ID

nên I nằm trên đường trung trực của AD\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD

14 tháng 12 2021

A )Ta có tam giác ABC cân tại A 

=> ˆABC=ˆACBABC^=ACB^

Và AB = AC

Xét hai tam giác vuông BCK và CBH ta có :

BC chung

ˆKBC=ˆBCHKBC^=BCH^

=>BCK = CBH (cạnh huyền - góc nhọn )

=>BH = CK (đpcm)

B) ta có BCK = CBH

=> ˆHBC=ˆKCBHBC^=KCB^

=> ˆABH=ˆACKABH^=ACK^

=> tam giác OBC cân tại O

=> BO = CO

Xét tam giác ABO và tam giác ACO 

AB = AC

BO = CO (cmt)

ˆABH=ˆACKABH^=ACK^

=> ABO=ACO (c-g-c)

=> ˆBAO=ˆCAOBAO^=CAO^

=> AO là phân giác góc ABC (đpcm)

C) ta có

AI là phân giác góc ABC 

Mà tam giác ABC cân tại A

=> AI vuông góc với cạnh BC (đpcm)