Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Az // BC => \(\widehat{xAz}=\widehat{ABC}\)(đồng vị) (1)
Az // BC => \(\widehat{CAz}=\widehat{ACB}\)(so le trong) (2)
Từ (1), (2) và \(\widehat{ABC}=\widehat{ACB}\)=> \(\widehat{xAz}=\widehat{CAz}\)
=> Az là tia phân giác của góc CAx.
Vì không nhớ cách làm chi tiết nên chị viết tắt nhé.
a) Vì ax là tia phân giác của góc bac nên bax=xac(1)
Vì ax//cd => xac và dca là hai góc so le trong=>xac=acd (2)
Vì bax và adc là hai góc đồng vị =>bax=adc(3)
Từ (1), (2) và (3) => xab=adc=acd (đpcm)
Xin lỗi vì chỉ mới làm đc câu a nhé =))
sau khi đọc lời giải, nếu thấy đúng thì chúng ta kết bạn, okey?
THEO BÀI RA BC // AY
=> GÓC BCA=GÓC CAY
HAY GÓC BAC = GÓC ZAY (VÌ C THUỘC AZ) (1)
MÀ AZ LÀ P/G CỦA XAY
=> GÓC XAZ= GÓC ZAY (2)
NÊN TỪ (1) VÀ (2) => GÓC BCA= GÓC XAZ
HAY GÓC BAC= GÓC BCA (VÌ B THUỘC AX, C THUỘC AZ)
=> T/G ABC CÂN TẠI B
=> AB=BC
MÀ AB= 5 cm (GT)
=> BC= 5 cm
=> ĐPCM
Bài giải
Ta có : \(BC\text{ }//\text{ }Az\) nên \(\widehat{C_2}=\widehat{A_2}\) ( hai góc so le trong )
Mà \(\widehat{CAx}=\widehat{A_2}+\widehat{A_3}\) là góc ngoài tại đỉnh A của \(\Delta ABC\) nên \(\widehat{A_2}+\widehat{A_3}=\widehat{B}+\widehat{C_2}\)
lại có : \(\widehat{B}=\widehat{C_2}=\widehat{A_2}\) nên \(\widehat{A_3}=\widehat{B}=\widehat{C_2}=\widehat{A_2}\)
Vì \(\widehat{A_2}=\widehat{A_3}\) nên Az là tia phân giác \(\widehat{CAx}\)