K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Dựng bên ngoài tam giác ABC tam giác ABD đều.

Vẽ tam giác AME đều sao cho D, E nằm cùng phía so với AM.

Dễ thấy \(\Delta AED=\Delta AMB\left(c.g.c\right)\).

Suy ra ED = MB.

Ta có \(MA+MB+MC=ME+ED+MC\ge CD\) không đổi.

Đẳng thức xảy ra khi và chỉ khi M thuộc CD và \(\widehat{AMD}=60^o\).

12 tháng 3 2021

mk ko hiểu (hay do mk học dốt quá)khocroikhocroikhocroi

16 tháng 2 2020

M M 1 M 2 A B C

Giả sử tìm được điểm M trong \(\Delta ABC\)thỏa mãn đề bài.Vẽ các tam giác đều \(AMM_1\)và \(ACM_2\)ta có :

\(\Delta AM_1M_2=\Delta AMC\left(c-g-c\right)\)

Do đó \(M_1M_2=MC\)

Vậy \(MA+MB+MC=BM+MM_1+M_1M_2\)

Tổng này đạt giá trị nhỏ nhất khi và chỉ khi bốn điểm \(B,M,M_1,M_2\)thẳng hàng

Khi đó : \(\widehat{BMA}+\widehat{AMM_1}=180^0\)và \(\widehat{AM_1M}+\widehat{AM_1M_2}=180^0\)

Mà \(\widehat{AMM_1}=\widehat{AM_1M}=60^0\)

\(\Rightarrow\widehat{AMB}=\widehat{AM_1M_2}=120^0\)

Vì \(\Delta AMC=\Delta AM_1M_2\),do đó \(\widehat{AMC}=\widehat{AM_1M_2}=120^0\)

Vậy M là điểm nằm trong tam giác ABC và \(\widehat{ABM}=\widehat{BMC}=\widehat{CMA}=120^0\).

12 tháng 8 2019

giúp mình vs mình làm cần gấp

2 tháng 8 2020

a) \(\Delta\)ABD cân ở B vì có BA = BD,BI là phân giác của góc ABD nên BI là đường trung trực của AD

\(\Delta\)ACE cân tại C vì có CA = CE,CI là tia phân giác của góc ACE nên CI là đường trung trực của AE

Vậy I là giao điểm của các đường trung trực của \(\Delta\)AED

b) Từ I kẻ \(IP\perp AB,IM\perp BC,IN\perp CA\)

thì IP = IM = IN = m

\(\Delta\)API và \(\Delta\)ANI là tam giác vuông cân nên AP = AN = PI = IN = m

\(\Delta\)IPB = \(\Delta\)IMP (cạnh huyền - góc nhọn) => BP = PM(hai cạnh tương ứng)

Mà BA = BD => MD = AP = m

\(\Delta\)INC =  \(\Delta\)IMC (cạnh huyền - góc nhọn) => CM = CN(hai cạnh tương ứng)

Mà CE = CA => EM = AN = m

Vậy DE + DM + ME = 2m

c) \(\Delta\)IDE có \(IM=\frac{1}{2}DE\)nên ^DIE là góc vuông => ^DIE = 900

Theo tính chất góc ngoài của tam giác , ta suy ra :

^EAD = ^EAx + ^xAD = 1/2(^EIx + ^xID) = 1/2^EID = 1/2.900 = 450