Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\text{ }B\text{ }-3.tan\text{ }C=tan\text{ }60^o-3.tan\text{ }30^o=\sqrt{3}-3.\frac{1}{\sqrt{3}}=0\text{ }\text{ }\text{ }\text{ }\text{ }\)
Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau:
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1)
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2)
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3)
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có
tgB/tgC=1/3
\(tanB=tan15^0=2-\sqrt{3}\)
Cách tính cụ thể:
Trên tia AC lấy D sao cho \(\widehat{ABD}=30^0\Rightarrow BC\) là phân giác của \(\widehat{ABD}\)
Theo định lý phân giác: \(\dfrac{AC}{AB}=\dfrac{CD}{BD}=\dfrac{AC+CD}{AB+BD}=\dfrac{AD}{AB+BD}\) (1)
Lại có: \(tan\widehat{ABD}=tan30^0=\dfrac{AD}{AB}=\dfrac{1}{\sqrt{3}}\Rightarrow AB=\sqrt{3}AD\) (2)
\(sin\widehat{ABD}=sin30^0=\dfrac{AD}{BD}=\dfrac{1}{2}\Rightarrow BD=2AD\) (3)
Thế (2); (3) vào (1):
\(\dfrac{AC}{AB}=\dfrac{AD}{\sqrt{3}AD+2AD}=2-\sqrt{3}\)
\(\Rightarrow tanB=\dfrac{AC}{AB}=2-\sqrt{3}\)
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ CM=\dfrac{AC^2}{BC}=3,6\left(cm\right)\\ AM=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\ \dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{3}\\ \Rightarrow BD=\dfrac{4}{3}DC\\ \text{Mà }BD+DC=BC=10\\ \Rightarrow\dfrac{7}{3}DC=10\\ \Rightarrow DC=\dfrac{30}{7}\left(cm\right)\\ \Rightarrow DM=DC-CM=\dfrac{30}{7}-3,6=\dfrac{24}{35}\left(cm\right)\\ \Rightarrow S_{AMD}=\dfrac{1}{2}AM\cdot DM=\dfrac{1}{2}\cdot\dfrac{24}{35}\cdot4,8=\dfrac{288}{175}\left(cm^2\right)\)