K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

giúp mình bài này vs

21 tháng 11 2016

Từ A vẽ đường cao AH của tam giác ABC, từ M vẽ đường thẳng vuông góc với BC cắt AC tại N, Ta có các biểu thức sau: 
tgC=AH/CH=AH/(1/4(BC))=4AH/BC (1) 
tgB=MN/MB=MN/(1/2(BC))=2MN/BC. (2) 
tgB/tg C=(2MN/BC)/(4AH/BC)= MN/2AH (3) 
Theo định lý Talet thì MN/AH=2/3 do đó thay MN=2AH/3 vào biểu thức (3) ta có 
tgB/tgC=1/3

28 tháng 8 2020

\(Ta\)\(có\)\(:\)

\(tana\)\(=\frac{HM}{AH}\)

\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)

\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)

\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)

11 tháng 8 2016

chj linh còn on 0 ra em bảo

có cái này hay lắm

11 tháng 8 2016

chú làm j đấy

NV
13 tháng 6 2021

\(tanB=tan15^0=2-\sqrt{3}\)

Cách tính cụ thể:

Trên tia AC lấy D sao cho \(\widehat{ABD}=30^0\Rightarrow BC\) là phân giác của \(\widehat{ABD}\)

Theo định lý phân giác: \(\dfrac{AC}{AB}=\dfrac{CD}{BD}=\dfrac{AC+CD}{AB+BD}=\dfrac{AD}{AB+BD}\) (1)

Lại có: \(tan\widehat{ABD}=tan30^0=\dfrac{AD}{AB}=\dfrac{1}{\sqrt{3}}\Rightarrow AB=\sqrt{3}AD\) (2)

\(sin\widehat{ABD}=sin30^0=\dfrac{AD}{BD}=\dfrac{1}{2}\Rightarrow BD=2AD\) (3)

Thế (2); (3) vào (1):

\(\dfrac{AC}{AB}=\dfrac{AD}{\sqrt{3}AD+2AD}=2-\sqrt{3}\)

\(\Rightarrow tanB=\dfrac{AC}{AB}=2-\sqrt{3}\)

NV
13 tháng 6 2021

undefined