Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\text{ }B\text{ }-3.tan\text{ }C=tan\text{ }60^o-3.tan\text{ }30^o=\sqrt{3}-3.\frac{1}{\sqrt{3}}=0\text{ }\text{ }\text{ }\text{ }\text{ }\)
Cho tam giác ABC có AM là trung tuyến và AM=AB
Khi đó tanB - 3tanC bằng bao nhiêu vậy
mấy đứa ới ời ơi
Áp dụng Py-ta-go ta có
AH^2=AB^2-BH^2=>AH=5căn3
Áp dụng hệ thức lượng trong tam giác
AH^2=BH*HC=>HC=AH^2/BH=15
=>tanB=5căn3/5=căn3
tanC=5căn3/15
=>3tanC=5căn3/15*3=căn3
nên tanB=3tanC
\(tanB=tan15^0=2-\sqrt{3}\)
Cách tính cụ thể:
Trên tia AC lấy D sao cho \(\widehat{ABD}=30^0\Rightarrow BC\) là phân giác của \(\widehat{ABD}\)
Theo định lý phân giác: \(\dfrac{AC}{AB}=\dfrac{CD}{BD}=\dfrac{AC+CD}{AB+BD}=\dfrac{AD}{AB+BD}\) (1)
Lại có: \(tan\widehat{ABD}=tan30^0=\dfrac{AD}{AB}=\dfrac{1}{\sqrt{3}}\Rightarrow AB=\sqrt{3}AD\) (2)
\(sin\widehat{ABD}=sin30^0=\dfrac{AD}{BD}=\dfrac{1}{2}\Rightarrow BD=2AD\) (3)
Thế (2); (3) vào (1):
\(\dfrac{AC}{AB}=\dfrac{AD}{\sqrt{3}AD+2AD}=2-\sqrt{3}\)
\(\Rightarrow tanB=\dfrac{AC}{AB}=2-\sqrt{3}\)
Áp dụng tỉ số tanB trong tam giác vuông HAB và các hệ thức lượng trong tam giác vuông, chúng ta tính được AC = 30 13 cm; BM = 601 4 cm
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ CM=\dfrac{AC^2}{BC}=3,6\left(cm\right)\\ AM=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\ \dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{3}\\ \Rightarrow BD=\dfrac{4}{3}DC\\ \text{Mà }BD+DC=BC=10\\ \Rightarrow\dfrac{7}{3}DC=10\\ \Rightarrow DC=\dfrac{30}{7}\left(cm\right)\\ \Rightarrow DM=DC-CM=\dfrac{30}{7}-3,6=\dfrac{24}{35}\left(cm\right)\\ \Rightarrow S_{AMD}=\dfrac{1}{2}AM\cdot DM=\dfrac{1}{2}\cdot\dfrac{24}{35}\cdot4,8=\dfrac{288}{175}\left(cm^2\right)\)
\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)
⇒ AC = \(\dfrac{5}{12}\) .AB
= \(\dfrac{5}{12}.5\)
\(=\dfrac{25}{12}\) (cm)
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
\(=5^2+\left(\dfrac{25}{12}\right)^2\)
= \(\dfrac{4225}{144}\)
⇒ BC = \(\dfrac{65}{12}\) (cm)
AH.BC = AB.AC
⇒ AH = AB . AC : BC
= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)
\(=\dfrac{25}{13}\left(cm\right)\)
M là trung điểm của AC
⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)
∆ABM vuông tại A
⇒ BM² = AB² + AM²
= \(5^2+\left(\dfrac{25}{24}\right)^2\)
= \(\dfrac{15025}{576}\)
⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)