Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Bài làm:
a) Vì \(\widehat{B}=\widehat{C}\)=> Tam giác ABC cân tại A
Mà AD là đường phân giác xuất phát từ đỉnh của tam giác cân ABC
=> AD đồng thời là đường trung trực của tam giác ABC
=> AD _|_ BC và BD = DC
b) Ta có: \(\hept{\begin{cases}BD=DC\\BE=CF\end{cases}\Rightarrow}BD+BE=DC+CF\)
\(\Leftrightarrow DE=DF\)
=> AD là trung tuyến của tam giác AEF, mà AD là đường cao của tam giác AEF
=> Tam giác AEF cân tại A
=> AF = AE và AD là trung trực EF
a)
\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
AD là đường phân giác đồng thời là đường cao của \(\Delta ABC\)
\(\Rightarrow AD\perp BC\left(đpcm\right)\)
b)
\(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)(lần lượt kề bù với \(\widehat{ABC}và\widehat{ACB}\)
Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(AB=AC\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(BE=CF\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACF\left(c.g.c\right)\)
\(\Rightarrow AE=AF\)(2 cạnh tương ứng)
Lại có:
\(\widehat{BAE}+\widehat{BAD}=\widehat{CAF}+\widehat{CAD}\)
\(\Rightarrow\widehat{EAD}=\widehat{FAD}\)
\(\Rightarrow AD\)là phân giác của \(\Delta AEF\)
Mà \(\Delta AEF\)cân tại A
\(\Rightarrow AD\)đồng thời là đường trung trực của \(\Delta AEF\)
Vậy AD là đường trung trực của EF (đpm)
#Cừu