Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
b: Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)
BE=CF
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
Bài 1 : Bài giải
Bài 2 : Bài giải
Bài 3 : Bài giải
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Bài làm:
a) Vì \(\widehat{B}=\widehat{C}\)=> Tam giác ABC cân tại A
Mà AD là đường phân giác xuất phát từ đỉnh của tam giác cân ABC
=> AD đồng thời là đường trung trực của tam giác ABC
=> AD _|_ BC và BD = DC
b) Ta có: \(\hept{\begin{cases}BD=DC\\BE=CF\end{cases}\Rightarrow}BD+BE=DC+CF\)
\(\Leftrightarrow DE=DF\)
=> AD là trung tuyến của tam giác AEF, mà AD là đường cao của tam giác AEF
=> Tam giác AEF cân tại A
=> AF = AE và AD là trung trực EF
a)
\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
AD là đường phân giác đồng thời là đường cao của \(\Delta ABC\)
\(\Rightarrow AD\perp BC\left(đpcm\right)\)
b)
\(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)(lần lượt kề bù với \(\widehat{ABC}và\widehat{ACB}\)
Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(AB=AC\left(cmt\right)\)
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(BE=CF\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACF\left(c.g.c\right)\)
\(\Rightarrow AE=AF\)(2 cạnh tương ứng)
Lại có:
\(\widehat{BAE}+\widehat{BAD}=\widehat{CAF}+\widehat{CAD}\)
\(\Rightarrow\widehat{EAD}=\widehat{FAD}\)
\(\Rightarrow AD\)là phân giác của \(\Delta AEF\)
Mà \(\Delta AEF\)cân tại A
\(\Rightarrow AD\)đồng thời là đường trung trực của \(\Delta AEF\)
Vậy AD là đường trung trực của EF (đpm)
#Cừu