K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

Bạn xem lại đề nhé, 5202 hay là 52021?

15 tháng 12 2023

52021 bạn nhé mình viết nhầm 

11 tháng 1 2023

Chứng minh \(4\cdot S+5+5^{2022}\) là sao nhỉ?

11 tháng 1 2023

TK :

Ta có A = 5 + 52 + 53 + ... + 52021

5A = 52 + 53 + 54 + ... + 52022

5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )

4A = 52022 - 5

Vậy 4A + 5 = 52022 - 5 + 5 = 52022

 

24 tháng 10 2021

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)

3 tháng 12 2021

Answer:

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)

\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)

\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)

\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)

Mà ta có: \(S=16276⋮313\)

Vậy \(S⋮313\)

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

6 tháng 12 2023

  S= 5+52+53+...+52020+52021

 5S=52+53+54+...+52021+52022

 5S - S=4S=52022-5

  Ta có: 4S+5=52022

             =4S -5 +5 =52022

              => 4S=52022

11 tháng 12 2023

  S        =  5 + 52 + 53 +...+ 52020 + 52021

5S        = 52+ 53 + 54 +...+ 52021 + 52022

5S-S =(52 + 53 + 54 + ... + 52021 + 52022)-(5 + 52 + 53 + ... + 52021)

4S   = 52 + 53 + 54 +...+ 52021 + 52022 - 5 - 52 - 53 - ...- 52021

4S   = (52 - 52)+(53- 53)+(54 - 54) + ... +(52021 - 52021)+(52022 - 5)

4S   = 52022 - 5

4S + 5 = 52022 - 5 + 5

4S + 5 = 52022  (đpcm)

 

DT
10 tháng 12 2023

\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\\ 5S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\\ 5S-S=\left(5^2+5^3+5^4+...+5^{2021}+5^{2022}\right)-\left(5+5^2+5^3+...+5^{2020}+5^{2021}\right)\\ 4S=5^{2022}-5\\ 4S+5=5^{2022}\left(DPCM\right)\)

28 tháng 10 2021

\(S=5^2+5^4+5^6+.....+5^{2020}\)

Biết rằng mỗi số mũ của tổng các lũy thừa là số chẵn cách nhau 3 đơn vị

\(S=5^2+2^1-5^1\)

\(S=7^3-5^1\)

\(S=5^2:1^1\)

\(S=4^1\)

28 tháng 10 2021

còn chứng minh S chia hết cho 313 nữa mà bạn

24 tháng 12 2023

Mũ chứ không phải ngũ bạn ơi.

24 tháng 12 2023

S= 5 + 52+53+...+52021

5S=52+53+54+...+52022

5S-S=52+53+...+52022-5-52-53-...-52021

4S=(52-52)+(53-53)+...+(52021-52021)+(52022-5)

4S=52022-5

=>4S+5=52022-5+5

=>4S+5=52022

     Vậy 4S+5=52022