K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

15 tháng 11 2016

a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949

9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)

b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:

S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)

Vậy S chia hết cho 10

12 tháng 11 2018

lam duoc ko moi nguoi

24 tháng 10 2019

minh dang can gap

17 tháng 1 2016

bạn nên xem kĩ lại đề đề bài thiếu 1 số hạng nữa là 31

17 tháng 1 2016

a)S=(3^2003-1):2

b)nhom 2 so vao 1 nhom 

24 tháng 12 2017

Ta có S=1+2+22+23+...+259

\(\Rightarrow\)2S=2+22+23+24+...+260

\(\Rightarrow\)2S-S=260-1

do 2 chia 3 dư 1 \(\Rightarrow\)260 chia 3 dư 160\(\Rightarrow\)260 chia 3 dư 1

\(\Rightarrow\)260 -1 \(⋮\)3

Hay S\(⋮\)3 (dpcm)

24 tháng 12 2017

\(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)

\(=3+2^2\times3+...+2^{58}\times3\)

\(=3\times\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(S⋮3\)