Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)
\(=\left(S-1\right)+3^{100}\)
\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)
Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
ở phần câu hỏi tương tự có câu giống hết thế này được trả lời rôi bạn vào đó mà xem
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
a)
M= 1+3+32+33+...+319
= (1+3+32)+(33+34+35)+...+(317+318+319)
= 13+ 33.(1+3+32)+...+317.(1+3+32)
= 13.(1+33+...+317) chia het cho 13
M= 1+3+32+33+...+319
= (1+3+32+33)+...+(316+317+318+319)
= 40+...+316.(1+3+32+33)
= 40+...+316.40
= 40. (1+...+316) chia het cho 40
M = 1+3+32+33+...+319
Vì 3+32+33+...+319 chia het cho 9
=> M chia cho 9 dư 1
=> M không chia hết cho 9
b) trong câu hỏi tương tự nhé bạn
a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949
9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)
b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:
S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)
Vậy S chia hết cho 10
S=(1-3+32-33)+...+(396-397+398-399)
= -20+..+396(1-3+32-33)=-20+..+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20