Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
a, Ta có :\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)\)
\(=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)\)
\(=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)\)
\(=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)
\(\Leftrightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
\(3x\left(x+2\right)-20x-40=0\)
\(\Rightarrow3x\left(x+2\right)-20\left(x+2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}}\)
Vậy \(x=\left\{\frac{2}{3};-2\right\}\)
Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)
Giả sử \(f\left(x\right)\)chia hết cho x-1
\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)
\(=0\)
\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)
Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)
\(\Rightarrow\)mâu thuẫn
\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )
Bài 2:
Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)
\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)
Đồng nhất hệ số 2 vế ta được:
\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)
Vậy ...
Bài 3:
Vì \(P\left(x\right)\)chia \(x+3\)dư 1
\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)
\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)
\(=1\left(1\right)\)
Vì \(P\left(x\right)\)chia \(x-4\)dư 8
\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)
\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)
\(=8\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư
\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)
\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)