K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)

B(x)=1-x^n/1-x

A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x

x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)

=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1

29 tháng 5 2023

bn ơi mk chưa hiểu lời giải của bạn ạ

19 tháng 12 2020

x^4 - x^3 + 6x^2 - x + n x^2 - x + 5 x^2 + 1 x^4 - x^3 + 5x^2 x^2 - x + n x^2 - x + 5 n - 5

Để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì

\(n-5=0\Rightarrow n=5\)

Vậy để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì \(n=5\)

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
25 tháng 10 2018

Hay  a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

2 tháng 9 2018

Đặt phép chia sau đo tính số dư

Vì x4+1 chia hết cho x2+ax +b ∀ x

⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =

24 tháng 11 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Để có phép chia hết thì số dư phải bằng 0.

Ta có: a – 5 = 0 hay a = 5.

a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

c: \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

 

26 tháng 8 2021

a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)

 

31 tháng 1 2021

undefined

31 tháng 1 2021

thank bạnyeu